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1. Introduction

Studies of two-particle correlations in high-multiplicity pp collisions revealed features that are
uncannily similar to those observed in heavy-ion collisions [1]. The number of charged-particle
pairs produced with small azimuthal-angle separation is enhanced over a wide range of pseudora-
pidity differences. The cause of this novel phenomenon, known as the “ridge”, remains unknown.

This document summarizes the ATLAS measurement of two-charged-particle correlations in
13 TeV pp collisions at the LHC [2]. This analysis uses 14 nb~! collected during a low-luminosity
run (average number of interactions per beam crossing 0.002—0.04) that took place in June 2015.

2. ATLAS detector, efficiencies

Reference [3] describes the ATLAS! detector in detail. This measurement used the ATLAS
inner detector (ID), minimum-bias trigger scintillators (MBTS), and the trigger and data acquisition
systems. The Level-1 trigger (MinBias) requires a signal in at least one MBTS counter; a high-
multiplicity trigger (HMT) requires a signal in at least one counter on each side of the MBTS, at
least 900 hits in the silicon strip tracker, and at least 60 tracks with pt > 0.4 GeV.

This analysis uses tracks with py > 0.3 GeV and |n| < 2.5, reconstructed in the ID and selected
as described in Ref. [2]. The pp events used have at least one primary vertex. For events with
multiple vertices, only tracks associated with the vertex with the largest }° pgr are used. Here the
sum runs over the tracks associated with each vertex. The charged-particle multiplicity, Ng°, is
defined as the number of tracks with pr > 0.4 GeV associated with the vertex with the largest

Y. p4. Figure 1 shows the distribution of NG and the MinBias and HMT trigger efficiencies.
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Figure 1: Left: Number of tracks with pt > 0.4 GeV, Nj’, in events selected by the MinBias and HMT
triggers. Right: MinBias and HMT trigger efficiency as a function of Nf;°. Figure from Ref. [2].

The MinBias trigger is fully efficient for N77° > 5 while the HMT is 90% efficient for Ni;° > 60
and fully efficient for N3¢ > 65. The tracking efficiency, €(pt,n), which is evaluated using Monte

UATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and
the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical
coordinates (r,¢) are used in the transverse plane, ¢ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in
terms of the polar angle 6 as 7 = —Intan(6/2). Transverse momentum is denoted by pr.
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Carlo simulation, increases with pr by less than 6% between 0.3 and 0.6 GeV, and varies only
weakly for pr > 0.6 GeV, where it ranges from 88-90% at n = 0 to 77-80% at |n| = 1.5 and
68-73% for |n| > 2.0

3. Two-particle correlation analysis

This analysis follows methods used in previous ATLAS measurements in Pb+Pb and p+Pb
collisions [4, 5, 6]. Two-particle correlations for charged particle pairs with transverse momenta p7.
and pl% are measured as a function of Ap = ¢¢ — ¢® and An = n —n®, with |An < 5|, determined
by the acceptance of the ID. The correlation function is defined as:

S(An,A¢)
B(AN,A0) G-D

where S and B are pair distributions constructed with pairs in the same event and in mixed events re-
spectively. Both distributions are corrected for the tracking efficiency of the pair €(p4%, n%)e(p4,n?).
Detector acceptance effects largely cancel in the ratio.

Figure 2 shows correlation functions for Ni;© intervals 10-30 (left) and < 120 (right), for track
pairs with 0.5 < p7, pl% < 5.0 GeV. Both correlation functions show a prominent peak at An =
A¢ =0, and a An-dependent enhancement centered at A9 = 7. These structures arise primarily
from jets and dijets respectively. In the high-multiplicity interval, C(An,A¢) presents a significant
enhancement, or “ridge"-like structure, at A¢ = 0 that extends over the full An range.

C(An,A¢) =

ATLAS Preliminary o_5<pj*’<5.o GeV
(s=13 TeV, L, =14 nb*

Data 2015

0.5<p°<5.0GeV  ATLAS Preliminary

10=N /<30 (s=13TeV, L, =14 nb’
- Cl

Data 2015

B
AR

25 Q “\M P
£ WW S102
RN WY/ 3 ~F
N \\\\t\\\\ ) g 1
W 0.98

\i
RO N
\\\\\\\\\\\\\\\\\\\#'“ \
\\\"“ W \w

Figure 2: Two-particle correlation functions, C(An,A¢), measured in events with low (left) and high (right)
charged-particle multiplicity, Nj°. The plots have been truncated to suppress the peak at An = A¢ = 0. In
both cases the pairs have 0.5 < p”T”b < 5.0 GeV. Figure from Ref. [2].

To focus on the long-range features, one-dimensional correlation functions, C(A¢), are ob-
tained by integrating the numerator and denominator of Eq. 3.1 over 2 < |An| < 5. Figure 3 shows
the C(A¢) distribution in different intervals of N§°; all four C(A¢) distributions show a strong peak
centred at A¢ = 7 that arises from the dijets. In the interval 10< N3° <30 interval, C(A¢) shows a
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Figure 3: Two-particle correlation functions, C(A¢), measured in different intervals of charged-particle
multiplicity, Ni3°. In all cases the pairs have 0.5 < p“T’b < 5.0GeV, and 2 < |An| < 5. The solid lines show
the result of a Fourier fit to the data using harmonics up to fifth order. Figure from Ref. [2].

minimum at A¢ = 0; with increasing N{;°, this minimum fills in, and a peak appears and increases
in amplitude. A Fourier series with harmonics up to fifth order fits the data well.

Figure 4 shows C(A¢) measured in the N[;° > 100 interval for two ranges of pf: 0.5-1 GeV
and 1-2 GeV, with p# allowed to vary over 0.5-5 GeV. The amplitude of the peak at A¢ =0 is
larger for the higher p% interval.
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Figure 4: Two-particle correlation functions, C(A¢), measured in different intervals of transverse momen-
tum. In all cases the pairs have 2 < |An| < 5. The solid lines show the result of a Fourier fit to the data using
harmonics up to fifth order. Figure from Ref. [2].

Following the ZYAM method [7, 8], the effect of uncorrelated pairs on C(A¢), which is es-
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timated from the constant in the Fourier fit (see Fig. 3), is subtracted; then, the resulting function
is normalized to the average number of pairs associated with each particle in the A¢ interval; this
defines the “per-trigger-particle yield", Y (A¢). The integral of the Y (A¢) between the two minima
near A¢ = 0, which are obtained from the Fourier fit, defines the ridge yield, Yjy;.

The dominant systematic uncertainties on Yiy arise from tracking efficiency (4%), assumptions
in the ZYAM procedure (4%) and consistency of the method tested with simulation (4%).

Figure 5 shows the ridge yield as a function of charged-particle multiplicity for same-charge
pairs, opposite-charge pairs, and all pairs. In all cases Yy is consistent with zero for N <40 within
uncertainties, but increases linearly with Nij¢ for Nii° >40. The results from same-charge pairs
and opposite-charge pairs are consistent within statistical uncertainties; this rules out resonances or
single jets as possible sources of this phenomenom.
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Figure 5: Ridge yield vs charged-particle multiplicity. Results are shown for all pairs, same-charge pairs
and opposite-charge pairs. The error bars and shaded bands indicate statistical and systematic uncertainties
(for clarity only shown in the all pairs case). Figure from Ref. [2].
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Figure 5 shows Y;, as a function of pf. for 0.5 < pl% < 5 GeV for three different N;° > intervals;
in all cases it increases up to pt < 2.5 GeV and decreases for larger pf. This behaviour is similar
to p+Pb and Pb+Pb measurements [4, 5, 6].
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Figure 6: Ridge yield vs pT measured in different N7;° intervals. The error bars and shaded bands indicate
statistical and systematic uncertainties. Figure from Ref. [2].

Figure 7 shows a comparison of the measured Y;, with CMS 7 TeV pp data [1], which were
obtained using similar analysis methods, as a function of N{j® and p?b. The differences in analysis
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methods are taken into account, as described in Ref. [2]. The measured Y;,, at 7 and 13 TeV agree
within uncertainties.
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Figure 7: Comparison of the measured Y;,; from this analysis to that measured by CMS at 7 TeV [1]. The
ATLAS data are plotted at the centres of the corresponding NTj° and p%‘b intervals; CMS data are plotted at
the mean values. The bars and shaded bands in ATLAS data represent statistical and systematic uncertainties,
respectively; the error bars in the CMS data represent the total uncertainty. Figure from Ref. [2].

4. Conclusions

Two-particle correlation functions in high-multiplicity pp collisions at /s = 13 TeV show a
ridge whose strength increases with charged-particle multiplicity, and has a strong pt dependence.
These results are compatible, within uncertainties, with previous CMS 7 TeV pp measurements [1].
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