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It is the central goal of our studies to describe parton fragmentation in the hot and dense medium
of a quark gluon plasma (QGP). Under the assumption that the medium is not static and homo-
geneous, knowledge about the temporal evolution of the processes involved can be of essential
importance. Therefore, parton fragmentation has been studied with a Monte-Carlo algorithm that
approximates the DGLAP-evolution of fragmentation functions via a set of parton cascades. The
presented work consists mainly of implementations of this kind of algorithm and the application
of a simple approximation, which gives the time development of partonic cascades. As approxi-
mations to the parton-splitting processes of gluons and massless quarks in the vacuum two differ-
ent schemes with the same leading-log contributions are investigated. Furthermore, the temporal
evolutions of quantities related to partonic cascades have been examined: To our understanding,
especially variables (like, e.g.: parton multiplicities or virtualities) that give insight, when parton
splittings take place, are of great interest, as they allow identifying the parts of the fragmentation
process that will be most affected by medium interactions.
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1. Introduction

Parton showers that are produced in heavy-ion collisions and propagate in the hot and dense
medium of a QGP can be simulated in event generators that rely on Monte-Carlo algorithms [1, 2,
3]. For partons propagating in the vacuum, the perturbative part of their fragmentation process can
be approximated via Monte-Carlo simulations (cf., e.g., [4, 5], which contain also treatments for
the fragmentation in a medium.) of the DGLAP evolution [6, 7],

σn+1 = σn⊗
αs

2π
Pa→b+c , (1.1)

where the total cross section σn+1 factorises into a hard part σn and splitting functions Pa→b+c for
the splitting of parton a into partons b and c. In this kind of algorithms, the parton splitting in
vacuum is mainly described by its longitudinal momentum fraction, which follows the distribution
of the splitting functions, together with the parton virtuality Q, which is selected between an in-
frared cut-off Q0 and an upper boundary Qmax from the partition function of the Sudakov factor
Sa (Qmax,Q) (cf. [8] for a review),

Sa (Qmax,Q) = exp

(
−
∫ Q2

max

Q2

dQ̃2

Q̃2

∫ x+

x−
dx

αs(x, Q̃2)

2π
∑
b,c

Pa→b+c(x)

)
, (1.2)

where x is defined as a momentum fraction of parton b as compared to parton a. The boundaries
x± are defined in Sec. 3. Soft emissions are resummed by the depency of αs on x. From Eq. (1.2)
it follows that parton splitting in the vacuum can be entirely described in the momentum space.

In the medium, partonic cascades evolve in a time dependent and spatially non-homogeneous
environment – expressed by a changing temperature T and other medium properties. As the
medium interactions, as well as their probabilities, largely depend on T , it is necessary to employ
a space-time dependent picture for the evolution of the partonic cascade.

The present work systematically studies the temporal development of a cascade in the vacuum,
which is initiated by a single light quark with fixed total energy E1. In particular, the number
N(t) of particles produced, their virtualities Q(t), and furthermore their spatial distributions are
investigated. Finally, it is evaluated, how these quantities are affected by different corrections to
the leading-log approximation to parton splitting.

2. Spatio-temporal picture of partonic cascades

A frequently used approximation [4, 9] (applicable only to a probabilistic approach of parton
fragmentation, as the one used here) for the time ∆t between production and decay of a virtual
parton is given by

∆t =
E
Q2 , (2.1)

where E is the parton energy in the laboratory frame. In order to obtain the spatial points of parton
splittings, it is assumed that, between 2 successive splittings, the intermediate partons behave as
free partons in addition to Eq. (2.1). Subsequently, the following steps ∆rµ separate the creation
and decay of a virtual parton in Minkowski space:

∆rµ =
pµ

E
E
Q2 =

pµ

Q2 . (2.2)
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The spatial distribution of partons in a cascade can, thus, be simulated at any given time t.

3. Approaches to partonic cascades

At leading-log accuracy the QCD radiation-pattern is captured with leading-order splitting-
functions by the DGLAP evolution, Eq. (1.1). This approximation is applicable, if Qi � Ei and
Qb, Qc�Qa for parton energies Ei and virtualities Qi (i = a, b, c). For a first instance of a Monte-
Carlo algorithm (here, referred to as scheme 1) one considers that the fraction x in Eq. (1.2) is a
light-cone-energy fraction, z (cf. [8]). For a splitting

p+a , Qa , ~pa⊥

zp+a , Qb , z~pa⊥ + ~k⊥

(1− z)p+a , Qc , (1− z)~pa⊥ − ~k⊥

it follows that
~k2
⊥ = z(1− z)Q2

a− (1− z)Q2
b− zQ2

c . (3.1)

It is imposed that Q2
a ≥ Q2

b, Q2
c ≥ Q2

0 and |~k⊥| ≥ f ΛQCD (with a numerical constant f ≈ 1; this
article takes f = 1.1 from [9].) for a splitting to be accepted. For the corresponding integration

boundaries in z one obtains z± = 1
2

(
1±
√

1− 4Q2
0+4( f ΛQCD)2

Q2
a

)
. Since no reference frame needs to

be specified, the evolution of the shower is frame independent in this formulation.
In an alternative approach (here, referred to as scheme 2) the fraction x can be taken as an en-

ergy fraction [5, 9] with the integration boundaries x±= 1
2

(
1±
√(

1− 4Q2
0+4( f ΛQCD)2

Q2
a

)(
1− Q2

a
E2

a

))
.

Thus, the splittings are more likely to be rejected, especially, when Ea is not much larger than Qa.
The occurrence of energy in the rejection criterion makes scheme 2 frame dependent.

4. Results

In order to simulate particle showers in the vacuum, a Monte-Carlo simulation of the DGLAP
evolution of partons, based on the parton evolution in vacuum of [5] was implemented. The neces-
sary input for this program is the energy E1 and an upper limit Qmax for the virtuality of the initial
parton in the cascade. At the threshold of Q0 = 1 GeV it is assumed that no further parton splittings
occur and that the partons hadronize. As an example, e+-e− collisions in the center-of-momentum
frame that produce an outgoing quark-antiquark pair were assumed at a scale of

√
s= 200 GeV. The

spatial and temporal evolution of one of the outgoing jets was investigated, under the assumption
that Qmax = E1 =

√
s

2 : The mean number of partons of a cascade at time t, 〈N(t)〉 is shown in the
upper panels of Fig. 1 for both schemes. The mean cascade saturates with 10 partons per cascade
at t ≈ 1 fm for scheme 1 and with 5 partons per cascade at t ≈ 3 fm for scheme 2. The numbers
of partons that were either initially present, or produced via 1, 2, or 3 successive splittings are also
shown in Fig. 1 for both schemes. For scheme 1 the mean number of initially present quarks de-
creases like a power law with time at early times. Later on, the asymptotic value is reached. Since
in the subsequent generations particles are produced, while others decay into the next generation
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at the same time, a plateau is formed, where creation and decay are at equilibrium. After a time of
t ≈ 1 fm for scheme 1 or t ≈ 3 fm for scheme 2, respectively, a threshold of particles, which does
not decay further, is still present. It can be observed, again, that the time scales in scheme 2 are of
a factor approximately 3 larger than in scheme 1, while a smaller numbers of partons is produced.

The activity of the partonic cascades was also investigated by the corresponding virtualities:
The sum of the virtualities of all partons per cascade, averaged over the total number of simulated
cascades, is shown in the lower panels of Fig. 1, together with the averaged virtuality of a single
(leading) parton, here the initial quark. Both curves indicate that the vacuum evolution of the
cascades stops at the order of magnitude of 1 fm, since the threshold of Q0 = 1 GeV is already
attained before. Most remarkably, for scheme 2 the virtualities at small time scales are far smaller
than for scheme 1.

Furthermore, the spatial distribution of the simulated partons was studied. Some sample results
can be seen in Fig. 2: A Cartesian coordinate system (x,y,z) with the 3-momentum of the initial
quark of the cascade parallel to the z-axis was assumed. Fig. 2 shows the parton-number density
per pixel as a function of ρ =

√
x2 + y2 and z for t = 0.03 fm, 0.05 fm, and 1 fm. These time

scales are also indicated (in grey) in Fig. 1. In order to compensate for the expansion with time,
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Figure 1: Upper panels: The average number 〈N(t)〉 of partons present in a partonic shower at time t
(red), together with its contributions from partons produced in 0 (purple), 1 (blue), 2 (green), and 3 (brown)
successive splittings. Lower panels: The average total virtuality 〈∑Q(t)〉 per cascade (red) together with the
average virtuality 〈Qq(t)〉 of a tagged initial quark (black) as a function of time t. Left side: results from
scheme 1. Right side: scheme 2.
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the pixel size is rescaled accordingly. Also, since the number of partons increases with time, the
density is normalised to 1. The light front, ρ2+z2 = t2, is also shown in Fig. 2. The parton-number
density exhibits a considerable peak in forward direction which becomes increasingly pronounced
at larger time scales, with a relatively small spatial dispersion in comparison to earlier times. This
peak is more strongly collimated in the results obtained from scheme 2, than in those from scheme
1. Thus, the average parton shower that is simulated via scheme 1 can be assumed to probe a larger
volume, when entering a hypothetical medium, than the average cascades obtained from scheme 2.

5. Conclusions

Monte-Carlo simulations of the DGLAP evolution of a light quark in the vacuum, have been
implemented via 2 different schemes that are the same up to leading-log accuracy, but differ in
their phase-space constraints. To the resulting partonic cascades a spatio-temporal picture has been
applied. For the 2 schemes, it has been found for initial quark energies, E1 = 100 GeV that most
partonic cascades stop in their evolution before a time scale of t ≈ 1 fm, or t ≈ 3 fm, respectively.
In comparison to the time scales of the QGP medium this kind of behaviour would imply that most
splittings happen shortly after the formation of the medium, or even before and corresponding
observables are created on the same time scales. Furthermore, a picture of the spatial evolution
of partonic cascades was used to show that most of the partons are concentrated in the forward
direction of the shower, with rather small dispersion, especially at large times.

For both schemes we found qualitatively a similar behaviour: However, in scheme 2, due to
the different constraints in phase space (leading to a Sudakov factor peaked at small virtualities),
parton splittings occurs at lower virtualities Q and, thus, also at larger time scales.
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Figure 2: Parton-number density per pixel in longitudinal direction z and transverse directions ρ =
√

x2 + y2

at the times t = 0.03 fm (upper panels), t = 0.05 fm (middle panels), and 1 fm (lower panels). In the diagrams
above, a pixel corresponds to a square with the side length t

110 . Left side: results from scheme 1. Right side:
scheme 2. Particles travelling with velocities smaller than the speed of light have to be found in the space
constrained by the red circles.
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