

Z'-induced FCNC Decays of Top, Beauty and Strange Quarks

Masaya Kohda*†

Chung-Yuan Christian University, Chung-Li, Taiwan E-mail: mkohda@hep1.phys.ntu.edu.tw

We discuss about a flavor-changing neutral current (FCNC) decay of the top quark which is induced by a new massive gauge boson Z', namely $t \to cZ'$, based on a model of the gauged $L_\mu - L_\tau$ symmetry (the difference between the muon and tauon numbers). The Z' boson is phenomenologically well-motivated: (i) it can explain the anomalous data observed by LHCb in $b \to s\mu^+\mu^-$ transition if heavy ($m_{Z'} \gg m_b$); (ii) it can solve the muon g-2 anomaly if light ($m_{Z'} \lesssim 400$ MeV). For these two cases, we illustrate whether the decay rate of $t \to cZ'$ succeeded by $Z' \to \ell^+\ell^-$ ($\ell = \mu, \tau$) can be as large as an observable level at the LHC by taking into account B and K meson FCNC data.

The European Physical Society Conference on High Energy Physics 22–29 July 2015 Vienna, Austria

^{*}Speaker.

[†]We thank K. Fuyuto and W.-S. Hou for collaboration.

1. Introduction

With a large amount of top and anti-top quarks produced at the LHC, rare top quark decays offer a nice probe to search for physics beyond the Standard Model (SM). In particular, FCNC decays of the top quark such as $t \to qZ$ and $t \to qh$ (q = c, u) have been vigorously pursued by the ATLAS and CMS experiments [1]. In this talk, we consider a top quark FCNC decay which produces a new massive gauge boson Z', namely $t \to cZ'$.

The hints come from B physics. One is the so-called P_5' anomaly by LHCb [2], which was first found in angular analysis of $B^0 \to K^{*0}\mu^+\mu^-$ with 1 fb⁻¹ data and, then, confirmed by the 3 fb⁻¹ update. The other is the lepton flavor non-universality in $B^+ \to K^+\ell^+\ell^-$ ($\ell = e, \mu$), found by LHCb with 3 fb⁻¹ data [3]. Although it is too early to tell if these $\sim 3\sigma$ anomalies are genuine, interestingly, various global analyses (see, e.g. Ref. [4]) points towards the existence of new physics contribution to C_9 , the Wilson coefficient of $(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$. The latter can be generated if there is a new boson Z' coupling to the left-handed $b \to s$ current and vector-like muon current. In Ref. [5], an explicit Z' model was proposed based on the gauged $L_{\mu} - L_{\tau}$ symmetry [6]. If such a Z' boson exists, the SU(2)_L symmetry implies the existence of the left-handed $t \to c$ current coupling to Z'. Hence, $t \to cZ'$ may occur if the Z' is lighter than the top.

The other virtue of introducing the Z' of $L_{\mu}-L_{\tau}$ is the explanation [7] of the long-standing muon g-2 anomaly [1]. Recently, it was pointed out [8] that a neutrino-nucleus scattering data, i.e. the neutrino trident production $\nu_{\mu}N \to \nu_{\mu}N\mu^{+}\mu^{-}$, strongly constrains the Z' mass $(m_{Z'})$ and new gauge coupling (g'), and the muon g-2 anomaly can be solved only if $m_{Z'} \lesssim 400$ MeV. This mass range is too low to generate the local operator $(\bar{s}b)(\bar{\mu}\mu)$ for explaining the $b \to s$ anomalies.

In the following, we study observability of $t \to cZ'$ at the LHC based on the model of Ref. [5] for the two scenarios: (i) $heavy\ Z'$ ($m_b \ll m_{Z'} < m_t - m_c$) motivated by the $b \to s$ anomalies; (ii) $light\ Z'$ ($2m_{\mu} < m_{Z'} \lesssim 400\ \text{MeV}$) motivated by the muon g-2 anomaly. In this talk, we do not consider the case with $m_{Z'} < 2m_{\mu}$, as the Z' decays only into neutrino pairs and collider search should be more challenging. (See Ref. [9, 10] for interesting phenomenology in this case.)

2. Model and Heavy Z' Motivated by $b \rightarrow s\mu^+\mu^-$ Anomalies

We consider the gauged $L_{\mu}-L_{\tau}$ model of Ref. [5]. The new symmetry U(1)' is introduced to gauge the $L_{\mu}-L_{\tau}$. It is spontaneously broken by the vacuum expectation value of the new Higgs field Φ with U(1)' charge +1: $\langle \Phi \rangle = v_{\Phi}/\sqrt{2}$, leading to the Z' mass $m_{Z'} = g'v_{\Phi}$. The fermionic sector is augmented by an extra generation of vector-like quarks, i.e., $Q_L = (U_L, D_L)$, U_R , D_R , and their chiral partners $\tilde{Q}_R = (\tilde{U}_R, \tilde{D}_R)$, \tilde{U}_L , \tilde{D}_L , which are charged under U(1)' with the charges +1 for $Q \equiv Q_L + \tilde{Q}_R$ and -1 for $U \equiv \tilde{U}_L + U_R$, $D \equiv \tilde{D}_L + D_R$, respectively. The vector-like quarks mix with the SM quarks via Yukawa couplings with Φ , given by

$$-\mathcal{L}_{\text{mix}} = \Phi \sum_{i=1}^{3} \left(\bar{\tilde{U}}_{R} Y_{Qu_{i}} u_{iL} + \bar{\tilde{D}}_{R} Y_{Qd_{i}} d_{iL} \right) + \Phi^{\dagger} \sum_{i=1}^{3} \left(\bar{\tilde{U}}_{L} Y_{Uu_{i}} u_{iR} + \bar{\tilde{D}}_{L} Y_{Dd_{i}} d_{iR} \right) + \text{h.c.}.$$
 (2.1)

The SU(2)_L symmetry imposes $Y_{Qu_i} = \sum_{j=1}^{3} V_{u_id_j}^* Y_{Qd_j}$ (i = 1, 2, 3) with CKM matrix elements $V_{u_id_j}$.

The heavy Q, U quarks induce $t \to cZ'$ via diagrams in Fig. 1, with the branching ratio

$$\mathscr{B}(t \to cZ') \simeq \frac{(1-x')^2(1+2x')}{2(1-x_W)^2(1+2x_W)} \left(|Y_{Qt}Y_{Qc}^*|^2 \frac{v^2 v_{\Phi}^2}{4m_Q^4} + |Y_{Ut}Y_{Uc}^*|^2 \frac{v^2 v_{\Phi}^2}{4m_U^4} \right), \tag{2.2}$$

where $x' \equiv m_{Z'}^2/m_t^2$ and $x_W \equiv m_W^2/m_t^2$. The first term is the contribution from the left-handed $t \to c$ current, related to $b \to s$ by SU(2)_L: $Y_{Qt}Y_{Qc}^* \simeq Y_{Qb}Y_{Qs}^*$. The latter is fixed by the $b \to s\mu^+\mu^-$ data, i.e. $\Delta C_9 \simeq Y_{Qb}Y_{Qs}^*/(2m_Q^2) \simeq -(34 \text{ TeV})^{-2}$ [4]. Then, one is left with the dependence on v_Φ . The neutrino trident production [5] constrains as $v_\Phi \gtrsim 540 \text{ GeV}$ (for $m_{Z'} \gtrsim 10 \text{ GeV}$) by CCFR data [11], while the B_s mixing gives an upper bound. In the B_s mixing amplitude induced by Z' exchange, one may eliminate [12] the dependence on $Y_{Qb(s)}$ and m_Q in terms of ΔC_9 . Then, allowing new physics effects up to 15%, $v_\Phi \lesssim 5.6 \text{ TeV} \times (34 \text{ TeV})^{-2}/|\Delta C_9|$. Therefore, the left-handed current contribution to $t \to cZ'$ is constrained as $0.8 \times 10^{-8} \lesssim \mathcal{B}(t \to cZ')_{LH} \lesssim 0.8 \times 10^{-6}$.

The second term in Eq. (2.2) is induced by right-handed $t \to c$ current and is free from down-sector FCNCs. To see how large it can be, we recast it as

$$\mathscr{B}(t \to cZ')_{\rm RH} \simeq \frac{(1-x')^2(1+2x')}{2(1-x_W)^2(1+2x_W)} \frac{v^2}{v_{\Phi}^2} |\delta_{Ut}\delta_{Uc}^*|^2, \tag{2.3}$$

where $\delta_{Uq} \equiv Y_{Uq} v_{\Phi}/(\sqrt{2}m_U)$ (q=t,c) is a mixing parameter between the vector-like quark U and t_R or c_R . Taking reasonably large mixings $\delta_{Uq} \simeq \lambda \simeq 0.23$ for illustration, the CCFR bound $(v_{\Phi} \gtrsim 540 \text{ GeV})$ imposes as $\mathscr{B}(t \to cZ')_{\text{RH}} \lesssim 4 \times 10^{-4}$.

The decay $t \to cZ'$ with $Z' \to \ell^+\ell^-$ ($\ell = \mu, \tau$) can be searched in $t\bar{t}$ events at the LHC. The Z' branching ratios are (a) $\tau\tau: \mu\mu: \nu\nu \simeq 1:1:1$ for $m_{Z'} > 2m_{\tau}$; (b) $\mu\mu: \nu\nu \simeq 1:1$ for $2m_{\mu} < m_{Z'} < 2m_{\tau}$. As the analogous mode $t \to cZ$ has been searched using $Z \to \ell^+\ell^-$ at the LHC, we can get a rough idea of sensitivity on $t \to cZ'$ by a simple scaling of Z and Z' branching ratios. The current strongest limit on $t \to cZ$ is set by CMS with full run 1 data [13]: $\mathcal{B}(t \to cZ) < 5 \times 10^{-4}$ at 95% CL. The projection [14] toward 300 fb⁻¹ data in 14 TeV run is $\mathcal{B}(t \to cZ) \lesssim 10^{-5}$. Scaling by $\mathcal{B}(Z \to \ell^+\ell^-)/\mathcal{B}(Z' \to \ell^+\ell^-) \simeq 0.15$ (flavor summed), we infer current and future CMS sensitivities:

$$\mathscr{B}(t \to cZ') \lesssim \begin{cases} 8 \times 10^{-5} & \text{[CMS run 1 (naive)],} \\ 2 \times 10^{-6} & \text{[CMS 300 fb}^{-1} \text{ (naive)]} \end{cases}$$
 (2.4)

for the heavy Z'. Therefore, the right-handed current mediated $t \to cZ'$ might be probed by the current CMS dataset, while the left-handed current mediated $t \to cZ'$ seems to be slightly below the CMS sensitivity even with 300 fb⁻¹ data.

Figure 1: Feynman diagrams which induce the effective tcZ' couplings.

¹We turn off the mixing of U with u_R , i.e. $Y_{Uu} = 0$, to avoid D meson constraints.

The search strategy should be changed for the light Z' ($m_{Z'} \lesssim 400 \text{ MeV}$). In particular, the light Z' should exhibit a distinct signature, namely a collimated muon pair from highly boosted Z', while the $t \to qZ$ search [13] requires events with two isolated (opposite-sign and same-flavor) leptons. Nevertheless, we simply adopt Eqs. (2.4) as the target values for the light Z' case to set a standard in the following study.

3. Light Z' Motivated by Muon g-2 Anomaly

In this section, we investigate the $t \to cZ'$ rate with the light Z' motivated by the muon g-2 anomaly: $2m_{\mu} < m_{Z'} \lesssim 400$ MeV. In this case, $b \to sZ' \to s\mu^{+}\mu^{-}$ decays are highly constraining due to the enhanced rates by onshell and longitudinal Z', and the effective $t_L c_L Z'$ coupling, related to $b_L s_L Z'$ by SU(2)_L, needs to be suppressed. The $B \to K^{(*)}\mu^{+}\mu^{-}$ measurements generically imply $\mathscr{B}(t \to cZ')_{LH} \ll 10^{-10}$ [10], far below the current and future CMS sensitivities of Eqs. (2.4).

The right-handed tcZ' coupling induces $b \to sZ'$ via the loop diagram in Fig. 2. Despite the loop and chiral suppression, the $b \to s\mu^+\mu^-$ data provide significant constraints on the t_Rc_RZ' coupling due to the enhanced rate, as explained above. Setting the mixings of Q and D with SM quarks zero for simplicity, we obtain the loop-induced bsZ' coupling: $\Delta g_{sb}\bar{s}_L\gamma^\alpha b_LZ'_\alpha$ with

$$\Delta g_{sb} = \frac{g' v_{\Phi}^2}{32\pi^2 v^2} \left[c_{cc} f_{cc} + (c_{tc} + c_{ct}) f_{ct} + c_{tt} f_{tt} \right], \tag{3.1}$$

where $c_{ij} = V_{ib}V_{js}^*Y_{Ui}Y_{Uj}^*m_im_j/m_U^2$ and f_{cc} , f_{ct} , f_{tt} are loop functions, logarithmically depending on m_U (see Ref. [9, 10] for details).

We can constrain the loop-induced bsZ' coupling from dimuon invariant mass $(q^2 \equiv m_{\mu\mu}^2)$ spectra in $B \to K^{(*)}\mu^+\mu^-$ measurements. We argue that $B \to K\mu^+\mu^-$ is better suited to search for a possible bump by Z' than $B \to K^*\mu^+\mu^-$ due to absence of the photon peak. The full run 1 LHCb result [15] for $B \to K\mu^+\mu^-$ only covers $q^2 > 0.1$ GeV² $\simeq (316 \text{ MeV})^2$, hence, can be evaded if $m_{Z'} \lesssim 316$ MeV. On the other hand, the 1 fb⁻¹ result of LHCb [16] for $B^+ \to K^+\mu^+\mu^-$ probes down to $q^2 > 0.05$ GeV² $\simeq (224 \text{ MeV})^2$, close to the dimuon threshold ($\simeq 211 \text{ MeV}$). The measured q^2 -spectrum below J/ψ region is rather flat in accordance with the SM prediction. Treating the average in low- q^2 [$\in (1,6)$ GeV²] range as background, we extract [9, 10] the allowed range for new physics contribution in the 1st bin as $\Delta \mathcal{B}(B^+ \to K^+\mu^+\mu^-) = (0.86 \pm 0.59) \times 10^{-8}$, which applies for 224 MeV $\lesssim m_{Z'} \lesssim 1414$ MeV. We take the 2σ range in numerical study.

Figure 2: Feynman diagram for the loop-induced dsZ' (sbZ') coupling mediated by vector-like quark U. The crosses indicate quark-mass insertions which flip chirality for t and c.

Figure 3: [left] Contours of $\mathcal{B}(t \to cZ')_{\text{RH}}$ are shown by the solid-black lines on the (Y_{Ut}, Y_{Uc}) plane for $m_{Z'}=285$ MeV, $g'=1.3\times 10^{-3}$ and $m_U=2$ TeV. [right] $\mathcal{B}(t\to cZ')_{\text{RH}}$ as a function of m_U for $Y_{Ut}=1$, $Y_{Uc}=\lambda$, $m_{Z'}=285$ MeV and $g'=1.3\times 10^{-3}$. In both figures, the pink-shaded region is allowed at 2σ by LHCb: $\mathcal{B}(B^+\to K^+Z')\mathcal{B}(Z'\to \mu^+\mu^-)<2.0\times 10^{-8}$; the light-green-shaded regions are favored by the BaBar excess at 2σ : $\mathcal{B}(B^+\to K^+Z')\mathcal{B}(Z'\to \nu\bar{\nu})\in (0.05,1.55)\times 10^{-5}$; the semi-transparent gray-shaded region represents 2σ exclusion by NA48/2: $\mathcal{B}(K^+\to \pi^+Z')\mathcal{B}(Z'\to \mu^+\mu^-)<2.1\times 10^{-9}$. As for red-dashed lines, see Discussion and Summary. See Ref. [9, 10] for details of other constraints.

 $b \to s v \bar{v}$ data are also available to constrain the loop-induced bsZ' coupling. The BaBar [17] provides the constraint on new physics as $\Delta \mathcal{B}(B^+ \to K^+ v \bar{v}) = (0.35^{+0.60}_{-0.15}) \times 10^{-5}$ for $0 < m_{Z'} \lesssim 1670$ MeV, with weaker bounds from other $b \to s v \bar{v}$ modes. Although the BaBar found some excess, leading to the two-sided interval, it is not statistically significant.

The right-handed tcZ' coupling also induces $s \to dZ'$ at one-loop (see Fig. 2), hence, constrained by $K^+ \to \pi^+ \mu^+ \mu^-$ data. For the latter, the most precise measurement comes from NA48/2 [18]. The measured $m_{\mu\mu}$ -spectrum is reasonably fitted by the linear form factor model. We see the data is most accommodating for new physics effects at $m_{\mu\mu} \sim 285$ MeV, with our extraction [9, 10]: $\Delta \mathcal{B}(K^+ \to \pi^+ \mu^+ \mu^-) \simeq (9.4 \pm 5.6) \times 10^{-10}$. To be tolerant for larger $t \to cZ'$ rate, we take $m_{Z'} = 285$ MeV as the benchmark in the following numerical study.

In Fig. 3 [left], the *B* and *K* decay constraints are shown on the (Y_{Ut}, Y_{Uc}) plane for $m_{Z'} = 285$ MeV, $g' = 1.3 \times 10^{-3}$ and $m_U = 2$ TeV. (See figure caption for details.) Contours of $\mathcal{B}(t \to cZ')_{\rm RH}$ are also shown by black-solid lines. Y_{Ut} is more tightly constrained than Y_{Uc} due to m_t/m_c enhancement in Eq. (3.1). The BaBar excess in $B^+ \to K^+ v \bar{v}$ data conflicts with the LHCb bound on $B^+ \to K^+ \mu^+ \mu^-$, although they agree within 3σ . Disregarding the BaBar excess, the LHCb provides strongest constraint along Y_{Ut} direction, while the NA48/2 excludes large Y_{Uc} : $|Y_{Uc}| \lesssim 1.4$. Allowing hierarchical Yukawa couplings with $Y_{Ut} \ll Y_{Uc}$, $\mathcal{B}(t \to cZ')_{\rm RH}$ can be as large as 10^{-5} , within the reach of CMS with 300 fb⁻¹ data [Eq. (2.4)].

In Fig. 3 [right], $\mathcal{B}(t \to cZ')_{RH}$ is shown as a function of m_U with the same $m_{Z'}$ and g' values,

for the Yukawa couplings with *normal* hierarchy: $Y_{Ut} = 1$, $Y_{Uc} = \lambda$. The LHCb constrains as $\mathcal{B}(t \to cZ')_{RH} \lesssim 4 \times 10^{-10}$, beyond experimental reach in the foreseeable future.

4. Discussion and Summary

In this conference, LHCb reported [19] a search for low-mass dark bosons χ in $B^0 \to K^{*0}\chi(\to \mu^+\mu^-)$ with the 3 fb $^{-1}$ data, finding no significant signal. The new LHCb limit reads $\mathcal{B}(B^0 \to K^{*0}Z')\mathcal{B}(Z'\to \mu^+\mu^-)<3.1\times10^{-9}$ at 95% CL for $m_{Z'}=285$ MeV. This constraint is overlaid on Figs. 3 by red-dashed lines. Now, an observable level of $\mathcal{B}(t\to cZ')(\gtrsim 2\times10^{-6})$ is limited in funnel regions, signaling a fine-tuning between Y_{Ut} and Y_{Uc} . We found similar tendency for other Z' mass values in the light Z' scenario.

In summary, the $t \to cZ'$ rate can be as large as an observable level at the LHC by the right-handed current contribution: (i) the heavy Z' motivated by the $b \to s$ anomalies can accommodate $\mathscr{B}(t \to cZ') \gtrsim 10^{-4}$, within the expected reach of the current CMS data; (ii) the light Z' motivated by the muon g-2 anomaly can accommodate $\mathscr{B}(t \to cZ') \gtrsim 2 \times 10^{-6}$, within the naively expected reach of CMS with 300 fb⁻¹ data, but at the cost of fine-tuning. Those parameter regions have not been probed by B and K physics, hence, the result illustrates uniqueness of *top flavor physics*.

References

- [1] K.A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
- [2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111, 191801 (2013); LHCb-CONF-2015-002.
- [3] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 113, 151601 (2014).
- [4] W. Altmannshofer and D.M. Straub, Eur. Phys. J. C 75, 382 (2015).
- [5] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Phys. Rev. D 89, 095033 (2014).
- [6] X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Phys. Rev. D 43, 22 (1991).
- [7] S. Baek, N.G. Deshpande, X.-G. He and P. Ko, Phys. Rev. D **64**, 055006 (2001).
- [8] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Phys. Rev. Lett. 113, 091801 (2014).
- [9] K. Fuyuto, W.-S. Hou and M. Kohda, Phys. Rev. Lett. **114**, 171802 (2015); Talk by W.-S. Hou at this conference.
- [10] K. Fuyuto, W.-S. Hou and M. Kohda, in preparation.
- [11] S.R. Mishra et al. [CCFR Collaboration], Phys. Rev. Lett. 66, 3117 (1991).
- [12] A. Crivellin, G. D'Ambrosio and J. Heeck, Phys. Rev. Lett. 114, 151801 (2015).
- [13] S. Chatrchyan *et al.* [CMS Collaboration], Phys. Rev. Lett. **112**, 171802 (2014).
- [14] CMS Collaboration, arXiv:1307.7135 [hep-ex].
- [15] R. Aaij et al. [LHCb Collaboration], JHEP 1406, 133 (2014).
- [16] R. Aaij et al. [LHCb Collaboration], JHEP 1302, 105 (2013).
- [17] J.P. Lees et al. [BaBar Collaboration], Phys. Rev. D 87, 112005 (2013).
- [18] J.R. Batley et al. [NA48/2 Collaboration], Phys. Lett. B 697, 107 (2011).
- [19] Talk by A. Mauri at this conference; R. Aaij et al. [LHCb Collaboration], arXiv:1508.04094 [hep-ex].