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1. Introduction

Recent development of the numerical algorithm, software and hardware makes a tremendous

progress to be exactly simulating the dynamics of nucleon and nuclei including the dynamical

light quarks close to physical pion mass in lattice QCD. On the other hand, aiming for the precise

calculation of nucleon structure function in lattice QCD, we confront a dilemma, which is a sort

of noise issue pursuing the high precision of Monte-Carlo simulation without the contamination of

non-ground state (excited state) effect. According to a naive expectation of signal-to-noise ratio of

nucleon propagator given its variance as described by induced pion propagator,

S/N ∼
√

N exp
[

− (mN −3/2mπ)t
]

, (1.1)

in statistics N at temporal extension t, its signal becomes exponentially small rather than statistical

noise, even approaching to the light quark, while S/N is scaled as a function of square of inde-

pendent statistics. Although there have been several attempts of precise computation of nucleon

form factor from several lattice collaborations, those results have not achieved a consensus with

each group (see more details, for instance [1] and references therein). Especially for nucleon axial

charge, which is even fundamental quantity and precisely measured by experiment, the lattice QCD

has not provided an established value, and reported about 10% discrepancy in physical point.

In this proceedings, we first apply the all-mode-averaging (AMA) technique [2, 3, 4] for axial

charge computation to make accurate study on N f = 2 Wilson-clover fermion configurations gener-

ated by Mainz-CLS group [5]. As we present in this paper, it also provides quantitative information

towards future study of nucleon form factor in the physical point.

2. Numerical method

2.1 All-mode-averaging

As described in [2, 3, 4], AMA estimator is defined in

O
AMA = O

(rest)+
1

NG

NG

∑
g∈G

O
(appx)g, O

(rest) =
1

Norg

Norg

∑
f∈G

[

O
f −O

(appx) f
]

, (2.1)

where O
(appx) is an approximation of observable O constructed by the sloppy inversion algorithm

of Dirac operator (truncated solver) being around 10−3 precision. Using covariant transformation

g in symmetry G on the lattice, for instance the translational symmetry, O
(rest) is regarded as the

bias correction for low precision in O
(appx) and because of its covariance, the expectation value of

O
AMA is consistent with O itself. AMA advances that, if O

(appx) is appropriate observable having

strong correlation with original O , the statistical quality of O
AMA in N statistics is similar to NG

times statistics of O , even though the computational cost of O
(appx) is much less than O . We notice

that in Eq.(2.1) we also include the average over covariant transformation f with the number of

Norg, for instance, data-set of original observable O transformed by f which has been produced in

usual source-shift method. AMA is easily able to reuse the previous data-set in order to enhance

the statistical accuracy without any modification or recalculation of O .
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The formula of the ratio of standard deviation between O and O
AMA is given as

σ ama/σ ≃
√

N−1
G +2∆r+R, (2.2)

∆r =
( 1

Norg

− 1

NG

)(

1− 1

Norg

Norg

∑
f∈G

〈∆O
f ∆O

(appx) f 〉
σ f σ (appx) f

)

, (2.3)

R =
1

N2
G

NG

∑
g,g′∈G

〈∆O
(appx)g∆O

(appx)g′〉
σ (appx)gσ (appx)g′

, (2.4)

where we use ∆O = O −〈O〉, and standard deviation σ =
√

(〈∆O〉)2. The quantity in Eq. (2.3)

represents the magnitude of correlation between O and O
(appx), i.e. O

(appx) having ∆r ≃ 0 is

appropriate to reduce the error of O
AMA. The above equation also represents the dependence of

Norg in which the average of transformed O over Norg much less than NG makes the improvement

of ∆r to being small. The third equation is a summation of correlation between O
(appx)g with

each transformation in NG, i.e. correlation in correlator with different source location. Here we

ignore the correlation between O
f since those data is enough separated from each other rather than

O
(appx) (from a point of view of computational cost, AMA should be efficient when computing

much large NG time approximation than Norg time original one). Equation (2.2) suggests that, in

order to reduce the statistical error of AMA estimator to being close to maximum reduction of

1/
√

NG, O
(appx) having the small ∆r and less correlation between different transformation g is

needed. This relies on a choice of g and parameter of algorithm in the inversion of Dirac operator

with truncated iteration number of conjugate residual (CR) or conjugate gradient (CG) method.

In the next subsection, we show our strategy for the implementation of AMA in Wilson-Clover

fermion action.

2.2 Deflated SAP+GCR in AMA

For Wilson-Clover fermion, it is convenient to adopt the combination of local deflation field

with approximation in Schwartz alternative procedure (SAP) [6, 7]. SAP is able to construct the

approximation of inverse of Wilson-Dirac operator using domain-decomposition into 2×2 matrix

of which operator is divided by two local domain Λ, Λ∗ with local boundary fields ∂Λ, ∂Λ∗. As

a consequence of SAP applying into domain-decomposed Dirac operator, the inversion of Wilson-

Dirac operator is represented as the polynomial function of Dirac operator in each domain,

D−1 ≃ Msap = K

ncy−1

∑
ν=0

(1−DK)ν , (2.5)

K = RT
ΛD−1

Λ RΛ +RT
Λ∗D

−1
Λ∗ RΛ∗ −RT

Λ∗D
−1
Λ∗ D∂Λ∗D−1

Λ RΛ, (2.6)

RT
Λ = (1,0), RT

Λ∗ = (0,1), (2.7)

where ncy is the number of cycle of SAP relying on a quality of approximation to inversion. Here

MSAP is also used in not only preconditioner of generalized conjugate residual (GCR) algorithm

but also kernel in smoothing procedure for deflation field. In our set-up, we employ ncy = 5.

Deflation field is also efficient to make speed-up the iterative solver. Using the projection with

deflation field (see, for example reference [7]), the condition number is improved and then total
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iteration number is significantly reduced. Here incorporating SAP into subspace of deflation field

[7], the projected Dirac operator, which is called as little Dirac operator, is defined as

P =
Nb

∑
Λ,Λ′

Ns

∑
k,l

RT
ΛφΛ

k (φ
Λ′
l )†RΛ′(AΛΛ′

kl )−1, AΛΛ′
kl = (φΛ

k ,R
T
ΛDRΛ′φΛ′

l ), (2.8)

and then in this method there are totally Nd = NsNb deflation fields. In order to make deflation

method work well, the so-called smoothing process is able to enhance low-mode contribution in

deflation subspace. The preconditioner MSAP with ncy is also useful for this process. The important

point is that the performance of preconditioning with deflation field trades off the solving cost

of little Dirac operator, i.e. large space of deflation field (large number of deflation field and its

domain) is required of further cost to compute (AΛΛ′
kl )−1 because of increasing the condition number

of little Dirac operator.

In AMA, the number of deflation field and domain size, corresponding to Ns and Nb respec-

tively, is regarded as tuning parameter to control the quality of approximation, which is related to

the magnitude of ∆r in Eq.(2.3), in addition to the number of iteration Niter in the inversion algo-

rithm. We notice that the translational symmetry of the approximation O
(appx) is not trivial as well

as even-odd preconditioning [3], since the shift symmetry in inside domain may be broken by inac-

curacy of O
(appx), besides which is recovered after achieved the enough precision of O . To preserve

the translational invariance of O
(appx)g under transformation g ∈ G, we use the shift of the same

domain Λ (or Λ∗) and same site with original in local domain. In this case, there is no violation of

translational invariance for MSAP between the same local site in each Λ (or Λ∗), and therefore there

is limitation of available region of source location relying on the size of domain (this is only case

of using covariant symmetry in AMA, and in random source location method [4] it also does not

matter). In Section 3.1 we present an example of a choice of source location avoiding such bias.

3. Performance test of AMA

3.1 Covariance test and tuning parameters

Before going to discussion on the tuning parameter of AMA, we first check the preservation

of covariant symmetry of approximation using domain-decomposition for Dirac operator in SAP

preconditioning. As tested in [4], the magnitude of the difference between the approximation

shifted source and gauge shift, defined as

δc = O
(appx)g[U ḡ]−O[U ], (3.1)

presents the violation of covariance. In the numerical test, we use the domain-size of 64 and

deflation field Ns = 30 on F7 ensemble. We use the transformation g of the shift of source location

g = (6,6,0,0) and gauge field ḡ = (−6,−6,0,0), where those shifts correspond to even shift of

domain-location keeping in the equivalent domain Λ or Λ∗ to preserve the covariant symmetry in

domain-decomposition as mentioned in Section 2.2. For approximation, we set the threshold to

be fixed in 30 iterations of GCR, corresponding to 0.01–0.02 of magnitude of normalized norm of

residual vector. In Figure 1 we show |δc| for nucleon propagator at each time-separation from sink

and source point. One sees that δc increases to the order of 10−3–10−5 at large time-separation
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Figure 1: Error of covariance for the nucleon propagator as a function of time-separation at one configura-

tion in 96×483 lattice with mπ = 0.277 GeV. Different colored lines denote the result in smeared source-sink

(blue) and point source-sink (green).

more than 30 in lattice unit due to accumulation of round-off error (although in this region it is

statistically noisy), however below 25 time-slice in lattice unit, which is appropriate signal region,

δc is less than 10−6. From the practical point of view, the error of covariant symmetry violation is

negligible in our parameter setting.

3.2 Error scaling and computational cost

Finally we test the error scaling as a function of total consuming time of CPU and the number

of measurement. In this test, we use the cluster machine called as “Wilson” and “Clover” in Institut

für Kernphysik and Helmholtz Institute Mainz in Mainz University. Figure 2 plots the relative error

of the ratio of three-point and two-point function at time-slice t = ts/2 with several NG on different

number of configurations. From NG = 8 to 64 on F7 ensemble, since the correlators in each g

increase the magnitude of R, which is correlation between propagator with different O
(appx)g due

to small distance in finite space-time, the computational cost does not ideally decrease. In our test

case, NG = 8 case has about 50% smaller cost than other NG, and from NG = 16 the error scaling

is similar to others. Compared to the total cost of conventional method at a point of similar relative

error, we have roughly 1.5–3 times gain by use of AMA.

4. Summary and discussion

In this proceedings, we apply AMA to Wilson-clover fermion configurations using tuned pa-

rameter of SAP+GCR with deflation method, and confirm that our parameter of AMA is able to

reduce the computational cost to more than two times smaller than traditional source averaging

technique. This is feasible study of determination of physical value of nucleon form factor from

lattice QCD, and so that we will perform further study of the chiral behavior of nucleon form fac-
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Figure 2: The relative error of axial charge at time-slice t/a = 7 in the lattice unit versus CPU time, on

which we measure in the cluster machine called as “Wilson” in Mainz University. Different symbols denote

the error scaling with different number of NG using the several number of configurations. For non-AMA,

this is exact result of correlator on the maximum number of configurations with one source

tor including not only gA but also iso-vector channel with various lattice parameters [8] in high

statistics under way.
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