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Over the last decade tensor network states (TNS) have emerged as a powerful tool for the study
of quantum many body systems. The matrix product states (MPS) are one particular class of TNS
and are used for the simulation of 1+1 dimensional systems. In this proceeding we use MPS
to determine the elementary excitations of the Schwinger model in the presence of an electric
background field. We obtain an estimate for the value of the background field where the one-
particle excitation with the largest energy becomes unstable and decays into two other elementary

particles with smaller energy.
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1. Introduction

In a quantum many body system the dimension of the Hilbert space increases exponentially with
the number of sites. This makes any attempt of solving a realistic system using exact diagonaliza-
tion impossible. Fortunately, research on entanglement showed that the low energy states of local
gapped Hamiltonians live in a tiny corner of the Hilbert space. Because they dominate the behavior
of condensed matter systems at low temperatures, it indeed makes sense to focus on the low energy
states. Also for quantum field theories, independent of whether they are strongly coupled or weakly
coupled, the low energy regime is of interest

The tensor network states (TNS) [1] are a variational class of states living in this tiny corner. Ide-
ally, the number of parameters of these states is small and expectation values of local quantities can
be computed efficiently in the number of sites in the system. In one spatial dimension the most fa-
mous example are the matrix product states (MPS). It is rigorously proven that they can efficiently
approximate the low-energy states of a local gapped Hamiltonians [2]. The many successful sim-
ulations of many-body systems using MPS in the last decade showed that this result is not only of
theoretical interest. Furthermore, as MPS are formulated in the Hamiltonian framework, they allow
the difficult simulation of out-of-equilibrium physics [3, 4]. In the last years MPS has proven to
be powerful for gauge theories, e.g. [5, 6]. In particular for the massive Schwinger model, QED,
with one flavor, different groups considered MPS simulations, e.g. [7, 8, 9, 10, 11, 12]. For higher
dimensions different gauge invariant TNS constructions have also been developed [13, 14, 15, 16]
with some first numerical applications on simple gauge theories.

Here we continue our research on the Schwinger model [8, 9, 10] by investigating the one-particle
spectrum in the presence of an electric background electric field got. For oo = 1/2 something in-
teresting happens. As the fermion mass increases there will be a phase transition around (m/g). ~
0.33 related to the spontaneous breaking of the CT-symmetry [7, 17, 18]. The ground state is
degenerate for m/g > (m/g). and kinks ‘connecting’ the two vacua arise. This is different from
the spectrum in the case of a zero background electric field where the elementary particle spec-
trum consists of three or more stable particles for non-vanishing fermion mass [17]. As a new
step in completing the phase diagram of the Schwinger model we will determine the elementary
excitations for different values of . Earlier numerical studies on the elementary excitations of the
Schwinger model only focussed on the cases oo = 0 [7, 11, 19] and o = 1/2 [7]. An overview
of the low-energy spectrum might also help in a better understanding of the dynamics induced by
a quench in the form of an electric field. Indeed, in [9] we hinted that the behavior in the linear
response regime can be understood by looking at the one-particle excitations of the Hamiltonian.
Even beyond linear response, similar arguments explain the observations [20].

2. Setup in the MPS-framework
Hamiltonian. The lattice Hamiltonian for the Schwinger model reads (see [10, 21] for details):

E?(n m .
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Here we have introduced the parameter x = 1/(g2a*) with a the lattice spacing, m the fermion mass

and g the coupling constant. From now on we will work in units g = 1. The staggered fermions

are traded for a spin system living on the sites: o,(n)|s), = sls), (s = £1),0% = (1/2)(0, Lioy).
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The gauge fields live on the links and we have the operators 0(n) = agA|(na) and their conjugate
momenta E(n) ([6(n),E(n')] = id,,), which correspond to the electric field. In an uniform elec-
tric background field E = go in a compact formulation we have E(n) = g(L(n) + o) where L(n)
has integer charge eigenvalues p € Z and ¢®) and e~i0(n) correspond to the ladders operators:
L(n)|p), = pIp),, €W |p), = pE1),,p € Z.

The key-feature of the Hamiltonian (1) is that it has the gauge symmetry generated by G(n) =
L(n)—L(n—1)—(o:(n)+(—1)")/2. A gauge theory differs from other theories by the fact that all
physical states |®) have to satisfy G(n) |®) = 0,Vn € Z. Furthermore, the Hamiltonian is invariant
under translations over an even number of sites. The fact that it is not invariant under any trans-
lation originates from the staggered formulation. Finally, for & = 0 and o = 1/2 the Hamiltonian
exhibits the CT symmetry which is the charge conjugation C (E — —E, 0, — —0;) added with
a translation T over one site. It is known that this CT" symmetry is only spontaneous broken for
oo=1/2andm/g = 0.33 [7, 17].

Ground state and excitations. In our approach site n and link n are blocked into one site with
local Hilbert space spanned by the kets |k), where k¥ = (s,p)(s = £1,p € Z). In the thermody-
namic limit (N = o) we proposed in [10] the following ansatz for the ground state

PA) =Y v (HATQ"‘A52"> VR |K) [ K) = {|K0) Ynez, AK € CP¥Prt ;€ CP1 v € CP
{K.} nez
(2a)

[A;/p](q,(xq);(r,ﬁr) = 5p’q+(s+(,1)n)/25r7p[af,’p]aqﬁr;q, re Z, oy = 1.. 'DZ’B” =1.. .D’;+1. (Zb)
One observes immediately that (2a) is manifest invariant under 72 while the constraint (2b) imposes
gauge invariance. The variational freedom of this state thus lies within the matrices a,”. For ot = 0
or 1/2 one can impose CT invariance by setting AX = A¥" with k¢ = (—s,—20 — p) [8]. The
optimal approximation within these class of states for the ground state is obtained using the time-
dependent variational principle [10, 22].
For the elementary excitations with momentum k we take the ansatz [23, 24]:

‘IP]((B)> — Z eQikn/\/;f Z vz (HAlen]AzKZn> B:21;1+1,...,K2(m+M) ( H A’fZ)zIA§2n> VR |K>7 (33)

mez {Kn} n<m n>m+M

where A and A, correspond to the ground state (2) and impose gauge invariance by

2M
[B,(fl7p1)"'"’(‘§2M"p2M)](q,ozq);(rﬁr) = (I:I2 5pn,pn1+(5+(1)")/2> 5p]7q+(s,1)/25p2M’r[b£l751,..‘,32M]aq7ﬁr.

(3b)
For oo = 0 and @ = 1/2 one can further constrain By to classify the states according to their CT -
number, see [8] for an example. In this case the excitations with CT = —1 are referred to as ‘vector’

particles and excitations with CT = 1 are referred to as ‘scalar’ particles.

By minimizing (¥ (By)|H|¥x(Bk)) / (P (By) Wi (Bi)) with respect to by one finds the optimal
approximations |Wy(By)) for the excitations. For sufficiently large bond dimension this ansatz
should converge exponentially fast as M increases to an elementary particle with momentum k
[23]. The speed of convergence depends on how far this excitation is separated from the other
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excitations in the same momentum sector (in units of the Lieb-Robinson velocity). Note that the
computation time scales as &'(4Y max p D;’,) allowing only simulations for small M.

FE
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Figure 1: m/g = 0.25 Left (a): o = 0.45. Extrapolation of the energy E of the second excited state
to x = oo. We perform several linear and quadratic fits in 1/4/x through the points with x = (x1,...,x5) =
(25,50,60,75,90, 100) (see legend). Inset: our continuum estimate is the mean of all the fits. The error is the
standard deviation. Right (b): Energy of the elementary particles for different values of a. For o < 0.45 we
detect two stable particles with energies £ and E,. For a 2 0.48 the particle with energy E, has disappeared
in the continuum spectrum (yellow).

3. Results and discussion

For a fixed value of x we approximate the excited states using the ansatz (3) for M = 2. By com-
paring these energies with simulations for other values of the bond dimension D), and for M = 1
we obtain an error for truncating the bond dimension and truncating M. Continuum estimates for
the excitation energies are obtained similar as in [10, 11, 18]: we compute excitation energies for
x =25,50,60,75,90, 100 and perform linear fits in 1/4/x through the points corresponding to the
largest three, four, five and six x-values, see fig. 1 (a) . Furthermore we fit the points corresponding
to the largest four, five and six x—values against a quadratic function in 1/,/x. All these fits give
us an estimate of the energy in the continuum limit. To have some robustness against the choice of
fitting interval and the fitting function we take the mean of all these energies as our final estimate.
The standard deviation of this mean serves as an error on this value. In our simulations this stan-
dard deviation is not larger than of order 103 and dominates over the errors of truncating D » and
truncating M. More accurate results can be achieved by taking larger x—values, although this will
require a larger bond dimension and thus longer computation time.

The results for m/g = 0.25 are shown in fig. 1 (b). For o« = 0, we found in [8] two elementary
excitations with CT = —1 and energy E, ~ 1.0192 and E , ~ 2.34 and one elementary excita-
tion with CT =1 and energy E; ; ~ 1.728. Note that £, < Ey, + Ej; but £, > 2E; ,, which
means that the decay of E; , into two elementary particles is only prevented by the CT symmetry.
When 0 < o < 1/2 the CT symmetry is broken and this decay is not forbidden anymore. This is
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indeed what we observe in the one-particle spectrum: for & > 0 only the excitations with energy
E; resp. E; corresponding to Ej, and E; for ¢ — O remain stable. Furthermore, we observe
that the binding energy Ep;ng = 2E| — E, decreases as o tends towards 1/2. When the binding
energy becomes small, the ansatz (3) converges slowly towards the excited state with energy E; as
a function of M. We indeed observed for o¢ = 0.47 and o = 0.48 that the estimate for the energy
E, is unstable against variation of M and variation of the bond dimension. In this case the errors on
E; are too large and prevent an extrapolation towards x = oo. Nevertheless, in our simulations we
have E>(x) < 2E;(x) for x = (25,50,60,75,90,100) and the fact that E(x) decreases as the bond
dimension and M increase might suggest that this particle is still stable but with very small binding
energy.

For a = 1/2 the ground state is CT invariant. We computed the excitation energies with and
without classifying the states according to their CT —number. In both cases, we found only one
elementary particle. In the vector sector (CT = —1) all other states had energies that were larger
than 3E7 and in the scalar sector (CT = 1) the energies were larger than 2E;. This corresponds to
a theory with one stable particle. Therefore we estimate the value of the electric background field
where the second elementary particle disappears to be larger than 0.47 but smaller than 0.5.

In [7] they used DMRG on a finite lattice to investigate the Schwinger model for a = 1/2. There
they found a degeneracy for the first elementary excitation. Contrary, our simulations don’t show
any traces of that.

4. Conclusion

In this proceeding we continued the exploration of the Schwinger model as a testbed for MPS sim-
ulation of Hamiltonian lattice gauge theories. We investigated the elementary particle spectrum for
a non-zero background electric field. For m/g = 0.25 and small values of this background field
we detected two stable particles, but as o — 1/2 one particle disappears in the continuum of the
spectrum. This mechanism is best understood as the binding energy of the second excited state
becoming too small to be stable against a decay into two elementary particles with smaller energy.
It would certainly be interesting to investigate the spectrum for other values of m/g.

Looking further afield a logic step is the simulations of non-abelian lattice gauge theories in 1+1
and the simulations of higher dimensional gauge theories. The latter will be more challenging as
the present algorithms only allow PEPS, the two-dimensional analogue of MPS, with relatively
small bond dimension. Nevertheless, in the last years there has been some progress in PEPS al-
gorithms [25, 26, 27]. Furthermore, as this approach is free of any sign problem and allows for
real-time simulations, it is certainly worthwhile to further explore in this direction.
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