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1. Introduction and motivation

The study of vector boson pair production at the LHC provides some of the the most interesting
observables both for Standard Model and Beyond Standard Model physics. Indeed, the long sought
Higgs boson was recently discovered at the LHC mainly due its decays to pairs of electroweak
vector bosons [1,2]. Moreover, precise theoretical predictions for these processes will be important
to determine its quantum numbers, its couplings and its width [3, 4]. Finally, vector boson pair
production plays also a crucial role in new physics searches, as it allows to put constraints on
anomalous gauge couplings and constitutes the natural background for many searches for new
resonances.

Production of electroweak gauge boson pairs at the LHC occurs mainly through quark-antiquark
annihilation, qq̄′ → V1V2, but a sizable contribution comes also from the gluon-fusion channel
gg→V1V2 [5–7]. The latter starts at one loop and therefore contributes formally only from NNLO
onwards to the full partonic process pp→ V1V2. Nevertheless, being effectively a LO process, it
is expected to suffer from rather large theoretical uncertainties, poorly estimated by simple scale
variation. Moreover, as for the kinematically similar gg→ H process, we expect large QCD radia-
tive corrections (≈ O(100%) ) due to the large color charge of the gg initial state [8]. Finally, it is
well known that, depending on the final state and on the cuts applied, the gg channel can amount to
around 10% or more of the total cross section [9,10]. It becomes therefore clear that, in order to re-
duce the theoretical uncertainty to ≈ 5%, as required to match the expected experimental precision
to be reached by the LHC Run II, the calculation of the NNLO corrections to the quark-antiquark
channel must be supplemented by the corresponding NLO corrections to the gluon-fusion channel.

At NNLO, differential predictions for the qq̄′ channel have been computed for γγ , Zγ , W±γ

and Z Z [9–13], while only the fully inclusive cross-section [14] and the correspondingly normal-
ized resummed pT spectra [15] are currently known for W+W− final states. For γγ the NLO
corrections to the gg channel have been known for a long time [16], while recently also those for
ZZ and W+W− final states have been computed [17,18], confirming that they are crucial to provide
a reliable estimate of the theoretical uncertainties. These calculations have been made possible
by the recent evaluation of the two-loop massless QCD corrections to the corresponding helicity
amplitudes [19–24]. In next section we will report in particular on the computation of the two-
loop helicity amplitudes for the production of two off-shell electroweak vector bosons as described
in [22, 24].

2. The calculation of the two-loop helicity amplitudes

At variance with one-loop, two-loop calculations are far from being automatized and con-
stitute often the bottleneck to complete NNLO calculations. The by now standard approach to
two-loop calculations is based on the use of integration-by-parts identities [25,26] and the Laporta
algorithm [27], in order to reduce the thousands of scalar integrals appearing in a typical 2→ 2
process to a small subset of master integrals (MIs). The computation of the helicity amplitudes for
qq̄′→V1V2 and gg→V1V2 in particular proceeds as follows. We consider the two processes

p(p1)+ p(p2)→V1(p3)+V2(p4) , with p2
1 = p2

2 = 0 , p2
3 6= p2

4, p2
3, p2

4 6= 0

2



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
2
5

Two-loop QCD corrections to vector boson pair production at the LHC Lorenzo Tancredi

where the p(pi) are either quarks or gluons, and define

s = (p1 + p2)
2 , t = (p1− p3)

2 , u = (p2− p3)
2 .

We start by considering the most general form for the scattering amplitudes allowed by Lorentz
invariance and gauge invariance. Schematically for qq̄′→V1V2 we find for the partonic current Sµν

qq̄′

stripped of all couplings

ε3µε4νSµν

qq̄′ = ε3µε4ν

10

∑
j=1

A( j)
qq̄′ t

µν

j

with

tµν

1 = ū(p2) p/3u(p1) pµ

1 pν
1 , tµν

2 = ū(p2) p/3u(p1) pµ

1 pν
2 , tµν

3 = ū(p2) p/3u(p1) pµ

2 pν
1 ,

tµν

4 = ū(p2) p/3u(p1) pµ

2 pν
2 , tµν

5 = ū(p2)γ
µu(p1) pν

1 , tµν

6 = ū(p2)γ
µu(p1) pν

2 ,

tµν

7 = ū(p2)γ
νu(p1) pµ

1 , tµν

8 = ū(p2)γ
νu(p1) pµ

2 , tµν

9 = ū(p2)γ
µ p/3γ

νu(p1) ,

tµν

10 = ū(p2)γ
ν p/3γ

µu(p1) . (2.1)

Similarly, for the case gg→V1V2 we have for the partonic current Sµν
gg

ε3µε4ν Sµν
gg = ε3µε4ν

20

∑
j=1

A( j)
gg τ

µν

j (2.2)

with

τ
µν

1 = ε1 · ε2 gµν , τ
µν

2 = ε
µ

1 ε
ν
2 , τ

µν

3 = ε
ν
1 ε

µ

2 , τ
µν

4 = ε1 · ε2 pµ

1 pν
1 ,

τ
µν

5 = ε1 · ε2 pµ

1 pν
2 , τ

µν

6 = ε1 · ε2 pµ

2 pν
1 , τ

µν

7 = ε1 · ε2 pµ

2 pν
2 , τ

µν

8 = ε2 · p3 ε
µ

1 pν
1 ,

τ
µν

9 = ε2 · p3 ε
µ

1 pν
2 , τ

µν

10 = ε2 · p3 ε
ν
1 pµ

1 , τ
µν

11 = ε2 · p3 ε
ν
1 pµ

2 , τ
µν

12 = ε1 · p3 ε
µ

2 pν
1 ,

τ
µν

13 = ε1 · p3 ε
µ

2 pν
2 , τ

µν

14 = ε1 · p3 ε
ν
2 pµ

1 , τ
µν

15 = ε1 · p3 ε
ν
2 pµ

2 , τ
µν

16 = ε1 · p3 ε2 · p3 gµν ,

τ
µν

17 = ε1 · p3 ε2 · p3 pµ

1 pν
1 , τ

µν

18 = ε1 · p3 ε2 · p3 pµ

1 pν
2 ,

τ
µν

19 = ε1 · p3 ε2 · p3 pµ

2 pν
1 , τ

µν

20 = ε1 · p3 ε2 · p3 pµ

2 pν
2 . (2.3)

We imposed everywhere ε j · p j = 0 for j = 1,2,3,4 together with ε1 · p2 = ε2 · p1 = 0 . The coef-
ficients A( j)

X , for the two different initial states X = qq̄′,gg, are scalar coefficients and depend on
the perturbative order of the calculation. Given the tensors (2.1), (2.3), we proceed by defining
projection operators which, once applied to the amplitude as described below, extract the scalar
coefficients A( j)

X for the given initial state X :

Pµν

qq,k =
10

∑
j=1

a( j)
qq,k

(
tµν

j

)†
, Pµν

gg,k =
20

∑
j=1

a( j)
gg,k

(
τ

µν

j

)†
(2.4)

defined such that

∑
pol

Pµν

X ,k

(
gµρ −

p3µ p3ρ

p2
3

)(
gνσ −

p4ν p4σ

p2
4

)
Sρσ

X = A(k)
X . (2.5)
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In (2.5) we require explicitly transversality for the massive vector bosons, which is a consequence
of having imposed ε3 · p3 = ε4 · p4 = 0 on (2.1) and (2.3). We note here that the tensors and the
projectors are defined in d continuous dimensions.

We then proceed by generating the relevant Feynman diagrams with QGRAF [28], apply
on them the projectors (2.4), and perform the sum over polarizations and the Dirac algebra with
FORM [29]. In this way we can write the scalar coefficients A(k)

X as linear combinations of scalar
Feynman integrals, i.e. integrals whose numerators contain at most scalar products of internal and
external momenta. The latter can be collected into three independent integral families, for which we
generated and solved integration-by-parts identities using the automated code Reduze 2 [30–33].
This allowed us to reduce all integrals to the master integrals for massless four-point functions
with two off-shell legs. Their calculation had remained for a long time an outstanding task, which
was recently solved by different groups independently [22, 34–38]. The calculation is based on
the differential equation method [39–41] augmented by the choice of a canonical basis [42]. This
makes the analytic structure of the solution evident and allows to greatly simplify their integration
in terms of multiple polylogarithms [43–45].

In order to integrate the differential equations we employ the parametrization

s = m̄2(1+ x̄)2, p2
3 = m̄2x̄2(1− ȳ2),

t =−m̄2x̄((1+ ȳ)(1+ x̄ȳ)−2z̄ȳ(1+ x̄)), p2
4 = m̄2(1− x̄2ȳ2) , (2.6)

which rationalizes the Källen function for the two-body decay and allows us to write all master
integrals in terms of multiple polylogarithms with the following alphabet

{l̄1, . . . , l̄20}= {2, x̄,1+ x̄,1− ȳ, ȳ,1+ ȳ,1− x̄ȳ,1+ x̄ȳ,1− z̄, z̄,

1+ ȳ−2ȳz̄,1− ȳ+2ȳz̄,1+ x̄ȳ−2x̄ȳz̄,1− x̄ȳ+2x̄ȳz̄,

1+ ȳ+ x̄ȳ+ x̄ȳ2−2ȳz̄−2x̄ȳz̄,1+ ȳ− x̄ȳ− x̄ȳ2−2ȳz̄+2x̄ȳz̄,

1− ȳ− x̄ȳ+ x̄ȳ2 +2ȳz̄+2x̄ȳz̄,1− ȳ+ x̄ȳ− x̄ȳ2 +2ȳz̄−2x̄ȳz̄,

1−2ȳ− x̄ȳ+ ȳ2 +2x̄ȳ2− x̄ȳ3 +4ȳz̄+2x̄ȳz̄+2x̄ȳ3z̄,

1− ȳ−2x̄ȳ+2x̄ȳ2 + x̄2ȳ2− x̄2ȳ3 +2ȳz̄+4x̄ȳz̄+2x̄2ȳ3z̄} ,

providing in this way an explicit analytical solution for the two-loop corrections to the coefficients
A( j)

X . The expressions obtained in this way, nevertheless, are not yet suitable for phenomenological
applications. First of all we need to take into account the decays of the two vector bosons into
massless leptons, assuming 4-dimensional external states and fixing their helicities. It is easy to
see that in both cases for X = gg and X = qq̄′, there are only two independent helicity configurations
which can be conveniently written down using the spinor helicity formalism. As exemplification
we consider the gluon-fusion channel

g(p1)+g(p2)→V1(p3)+V1(p4)→ l(p5)+ l̄(p6)+ l(p7)+ l̄(p8).

We choose left-handed leptonic decay currents1 and obtain for the two independent helicity con-
figurations

1Note that the corresponding right-handed ones can be obtained exchanging the lepton-antilepton momenta p5 ↔
p6, p7↔ p8

4
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Mλ1λ2LL(p1, p2; p5, p6, p7, p8) =Cλ1λ2

[
[2 p/3 1〉

{
Eλ1λ2

1 〈57〉[68]

+Eλ1λ2
2 〈15〉〈17〉[16][18]+Eλ1λ2

3 〈15〉〈27〉[16][28]

+Eλ1λ2
4 〈25〉〈17〉[26][18]+Eλ1λ2

5 〈25〉〈27〉[26][28]
}

+Eλ1λ2
6 〈15〉〈17〉[16][28]+Eλ1λ2

7 〈15〉〈17〉[26][18]

+Eλ1λ2
8 〈15〉〈27〉[26][28]+Eλ1λ2

9 〈25〉〈17〉[26][28]

]
, (2.7)

with

CLL = [1 p/3 2〉〈12〉
[12]

, CLR = [2 p/3 1〉 ,

where the coefficients Eλ1λ2
j are linear combinations of the A( j)

X . Still the amplitudes are not in opti-

mal form for numerical evaluation. The scalar coefficients Eλ1λ2
j are given by large combinations of

rational prefactors and complicated multiple polylogarithms. While this does not constitute a prob-
lem in principle, it does in practice, as it renders the numerical evaluation of the result using [46]
very slow and unstable. To fix this issue we have used a private implementation of the algorithm
of [47, 48] in order to rewrite our result in terms optimized functions. In particular we remapped
our result to real valued log(l j), Lin(Ri) and Li2,2(Ri,S j), choosing

l j ≥ 0 , |Ri| ≤ 1 , |Ri S j|< 1 , (2.8)

such that all functions have convergent series expansions over the whole physical phase space and
their numerical evaluation becomes therefore much simpler. In this way we obtain very fast and
stable amplitudes, which can be evaluated in double, quadruple and arbitrary precision, over the
whole phase space, allowing for a reliable precision control system. Limiting ourselves to double
precision, we find for a typical phase space point in the bulk of the phase space an evaluation time
of O(125ms) for X = qq̄′ and O(600ms) for X = gg on a single CPU core2.

3. Conclusions and outlook

In this contribution we described the computation of the two-loop QCD corrections to the
helicity amplitudes for the production of two massive vector bosons in qq̄′ annihilation and gg
fusion. These amplitudes were the last missing pieces needed to complete the calculation of the
NNLO QCD corrections to vector boson pair production at LHC. The result has been optimized
for fast and precise numerical evaluation making their use suitable for phenomenological studies.
This opened up the path towards precision phenomenology in gauge boson pair production and
improvements of the background predictions for Higgs boson studies and searches for physics
beyond the Standard Model, as showed by the recent calculations [9, 10, 17, 18].

2The amplitudes are available as C++ codes at http://vvamp.hepforge.org/.
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