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After a brief general introduction about the integrand-reduction method, we will review the main
features of the GOSAM 2.0 automated framework for one-loop calculations and illustrate its
application to SM processes involving the production massive particles in conjunction with jets
and photons. These results have been obtained by interfacing GOSAM with different Monte Carlo
frameworks, thus combining the NLO calculation with parton shower effects. In the second part
of the presentation, we will focus on the applications of GOSAM beyond NLO. The code has
already been used within NNLO calculations for the computation of real-virtual contributions
and for the evaluation of the hard functions needed by approximate NNLO and resummation
techniques. We will finally briefly discuss a promising approach for the reduction of scattering
amplitudes beyond one loop based on integrand reduction via multivariate polynomial division.
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1. Introduction

In order to obtain precise phenomenological prediction from particle theory, much needed by
collider experiments to confirm the current understanding of subatomic physics and possibly to
shed light on potential discrepancies between the experimental results and the theoretical models,
we need efficient techniques and algorithms to compute scattering amplitudes for a wide variety of
processes. Scattering amplitudes can be studied by analyzing their symmetries and analytic prop-
erties, and a better understanding of their mathematical structure naturally provides the theoretical
framework to develop new approaches for their evaluation, and ultimately more efficient algorithms
to compute physical cross sections and differential distributions.

In this interplay between theoretical prediction and experimental data, the precision of such
calculations should match the precision of the measurements. Since leading-order (LO) results
are affected by large uncertainties, theoretical predictions are not reliable without including the
contribution of higher orders. For several analyses, even next-to-leading-order (NLO) accuracy
is not sufficient, thus forcing the theorist to tackle extremely challenging next-to-next-to-leading-
order (NNLO) calculations, resort to resummation techniques to properly include all the effects
of specific kinematic configurations, or to study clever way to obtain approximate NNLO results,
which incorporate most of the physical effects, without the need of a full NNLO computation.

The scope of this talk is to summarize the progress in the evaluation of scattering amplitudes
obtained by means of integrand-level techniques, in particular the OPP reduction algorithm, the
d−dimensional decomposition of scattering amplitudes, and the integrand reduction via multivari-
ate polynomial division. We will start by reviewing the main features of the GOSAM framework
for the automated computation of one-loop amplitudes and comment on some of the recent NLO
results obtained using it. Since GOSAM generates and evaluates only the virtual part of NLO am-
plitudes, it is mandatory to interface it with Monte Carlo tools to produce physical results, such as
cross sections and differential distributions. We will show examples of applications with particular
focus on some recent results obtained by interfacing GOSAM and MG5_AMC.

In the second part of this presentation, we will describe the applications of GOSAM beyond
NLO calculation. In particular, GOSAM has already been used for the computation of real-virtual
contributions within NNLO calculations and for the evaluation of the hard functions needed by
approximate NNLO and resummation techniques. As a forthcoming development, which could be
relevant for NNLO automation within an improved version of the code, we will briefly discuss the
evaluation of scattering amplitudes beyond one loop based on integrand reduction via multivariate
polynomial division.

2. Integrand Reduction at One Loop

The evaluation of the one-loop diagrams can be performed by decomposing each Feynman
integral in terms of a finite set of scalar master integrals [1] plus an additional rational function,
known in the literature as rational part, which depends on the masses and momenta of the specific
process. Since all scalar integrals are known and readily available in public codes [2], the main
problem in the evaluation of scattering amplitudes resides in the stable and efficient extraction of
all the coefficients which multiply each master integral.
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During the past decade, a successful approach to one-loop calculation was developed by merg-
ing the idea of four-dimensional unitarity-cuts [3, 4] with the understanding of the universal alge-
braic form of any one-loop scattering amplitudes, as provided by the OPP method [5–8]. In this
approach, the coefficients in front of the one-loop MIs can be determined by solving a system of
algebraic equations that are obtained by the numerical evaluation of the unintegrated numerator
functions at explicit values of the loop-variable and the knowledge of the most general polynomial
structure of the integrand itself.

Such systems of equations become particularly simple when all expressions are evaluated at
the complex values of the integration momentum for which a given set of inverse propagators van-
ish, that define the so-called quadruple, triple, double, and single cuts. This provides a strong
connection between the OPP method, and integrand-reduction techniques in general, and general-
ized unitarity methods, where the on-shell conditions are imposed at the integral level.

Integrand-level Reduction in Four Dimensions The algorithm was originally developed in four
dimensions [6–8]. Any four-dimensional numerator function N(q) can be rewritten by reconstruct-
ing 4-dimensional denominators Di = (q+ pi)

2−m2
i where pi are linear combinations of the in-

coming and outgoing four-momenta and q is the integration momentum. The universal functional
form of such decomposition is process-independent [6]. After this algebraic operation, all terms in
N(q) that, aside from reconstructed denominators, still depend on q have to vanish upon integra-
tion [5] and therefore do not contribute to the scattering amplitude. Such terms are called “spurious
terms” [6]. The physical content of the Feynman integral lies in the other terms, namely the part
of the numerator decomposition in which q-independent functions of masses and four-momenta
multiply sets of reconstructed denominators. In this framework, the computation of Feynman inte-
grals is remapped into the purely algebraic problem of the extraction of such coefficients. The four-
dimensional integrand-level reduction algorithm has been implemented in the code CUTTOOLS [9],
that is publicly available.

The appearance of divergences in the evaluation of Feynman integrals requires the use of a
regularization technique. In dimensional regularization, the integration momentum is upgraded to
dimension d = 4−2ε . Such procedure is responsible for the appearance of the rational part.

Following the OPP approach, there are two contributions to the rational term, which have
different origins: the first contribution, called R1, appears from the mismatch between the d-
dimensional denominators of the scalar integrals and the 4-dimensional denominators and can be
automatically computed by means of a fictitious shift in the value of the masses [6, 9]. A second
piece, called R2, comes directly from the d-dimensionality of the numerator function, and can be
recovered as tree-level calculations by means of ad hoc model-dependent Feynman rules [8, 10].

D-dimensional Integrand Reduction Since the rational term escapes four-dimensional detec-
tion, significant improvements have been achieved performing the integrand decomposition di-
rectly in dimension d = 4− 2ε rather than four [11, 12], which indeed allows for the combined
determination of all contributions at once [13].

These ideas led to the development of a new algorithm, called SAMURAI [12], in which the
polynomial structures described above also include a dependence on the extra-dimensional parame-
ter µ needed for the automated computation of the full rational term according to the d-dimensional
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approach, the parametrization of the residue of the quintuple-cut in terms of the extra-dimensional
scale [14] and the sampling of the multiple-cut solutions via Discrete Fourier Transform [15].

The integrand-reduction algorithm was originally developed for renomalizable gauge theories
at one-loop, namely Feynman integrals in which the the rank of the numerator function never
exceeds the number of external legs. In order to deal with more general models, such as effective
theories or certain BSM scenarios, this restriction should be lifted. In particular, as preparatory
work for the evaluation of pp→H+2,3 jets in gluon fusion [16,17], where effective gluon vertices
generated by the large top-mass limit appear and trigger higher rank terms, SAMURAI has been
enhanced to allow for such an extension [18, 19].

Integrand Reduction via Laurent Expansion If the analytic form of the numerator is known or,
more generally, if the polynomial dependence on the loop momentum is known, all coefficients in
the integrand decomposition can be extracted by performing a Laurent expansion (with respect to
one of the free parameters which appear in the solutions of the cuts) implemented via polynomial
division [18]. This idea provides a different and very powerful approach to integrand reduction,
and allows for an efficient and precise evaluation of all the coefficients. Moreover, the contribu-
tions coming from the subtracted terms can be implemented as analytic corrections, replacing the
numerical subtractions of the original algorithm. The parametric form of these corrections can be
computed once and for all, in terms of a subset of the higher-point coefficients required by the
original algorithm.

The method has been implemented in the C++ library NINJA [20]. Its use within the GOSAM

framework showed an exceptional improvement in the computational performance [21], both in
terms of speed and precision, with respect to the standard algorithms. The NINJA library has been
already employed in several calculation, among them the evaluation of NLO QCD corrections to
pp→ tt̄H j [22]. It has also been interfaced within FORMCALC [23] and very recently within
MG5_AMC [24].

3. NLO Phenomenology with GOSAM 2.0 and Interfaces with Monte Carlo Tools

The GOSAM framework [25, 26] combines automated diagram generation, algebraic manip-
ulation [27], tensorial decomposition, and integrand reduction. After the automated generation of
all Feynman integrals contributing to the selected process, the virtual corrections can be evalu-
ated using the integrand reduction via Laurent expansion [18] provided by NINJA, which is the
default choice, or the d-dimensional integrand-level reduction method, as implemented in SAMU-
RAI [12], or alternatively the tensorial decomposition provided by GOLEM95C [28, 29]. The only
task required from the user is the preparation of an input file for the generation of the code and the
selection of the various options, without having to worry about the internal details. GOSAM 2.0,
which was released in 2014, is a new version of the code that offers numerous improvements on
both generation and reduction, resulting in faster and more stable codes for calculations within and
beyond the Standard Model. GOSAM 2.0 also contains the extended version of the standardized
Binoth Les Houches Accord (BLHA) interface [30, 31] to Monte Carlo programs.

The computation of physical observables at NLO accuracy, such as cross sections and differ-
ential distributions, requires to combine the one-loop results for the virtual amplitudes obtained
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with GOSAM, with other tools that can take care of the computation of the real emission contribu-
tions and of the subtraction terms, needed to control the cancellation of IR singularities. This can
be obtained by embedding the calculation of virtual corrections within a Monte Carlo framework
(MC), that can also provide the phase-space integration, and the combination of the different pieces
of the calculation. A complete table of GOSAM’s interfaces with MC programs has been recently
presented in [32].

While in the following we will describe two Higgs-related projects, developed within the
frameworks of SHERPA [33] and MG5_AMC respectively, other significant NLO studies have
been performed with GOSAM during the past year, related to di-Higgs production in association
with jets [34], electroweak corrections to the production of a vector boson plus jets [35], and Wbb̄ j
production at hadron colliders [36] implemented in the POWHEG BOX framework [37].

Higgs Boson Production in Gluon Fusion As a first example of application of GOSAM we
will summarize the efforts that allowed us to complete the challenging calculation of NLO QCD
corrections to the associated production of a Higgs boson and three jets at the LHC in gluon fusion
in the large top-mass limit [17].

In this approximation, the coupling of the Higgs boson to gluons, which in the full theory is
mediated by a top-quark loop, is described by an effective operator that gives rise to vertices in-
volving the Higgs field and up to four gluons. The presence of these new vertices leads to Feynman
integrals in which the rank of the integration momentum in the numerator functions exceeds the
number of denominators. As a consequence, all reduction algorithms needed to be upgraded in
order to deal with such higher-rank integrals [18, 19, 38]. The upgraded algorithms were tested by
computing pp→ H +2 jets in gluon fusion [16].

The complexity and the huge number of diagrams contained in pp→ H +3 jets, in which the
one-loop virtual part alone involves more than ten thousand Feynman diagrams with up to rank-
seven hexagons, required the GOSAM code to be further enhanced. The introduction of numerical
polarization vectors and the option to sum diagrams sharing the same propagators algebraically
during the generation of the code led to an enormous gain in generation time and reduction of code
size. Moreover, the optimized algebraic manipulation provided by FORM 4.0 [39] further helped
to improve the performance. Concerning the reduction, a more stable and efficient extraction of all
coefficients was achieved thanks to the use of the already mentioned NINJA algorithm.

This calculation was also challenging for what concerns the real-emission contributions and
the integration over phase space. Due to the complexity of the integration, the first published
results [17] were obtained with a hybrid setup which combined GOSAM with both SHERPA and
the an in house implementation of the MadDipole/Madgraph4/MadEvent framework [40].

An updated analysis obtained interfacing GOSAM with SHERPA, which contains results and
distributions based on a set of ATLAS-like cuts and a comparison with the NLO predictions for
H + 2 jets, was published in the “Physics at TeV Colliders: Standard Model Working Group Re-
port” [41]. More recently, new phenomenological analyses have been presented [42] which include
numerical results for a large variety of observables for both standard cuts and VBF selection cuts.
For more details, we refer the reader to the the talk of Nicolas Greiner at this conference [43].

NLO QCD corrections to pp→ tt̄γγ As a second application, we present a new interface that
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was developed between the multipurpose Monte Carlo tool MG5_AMC and GOSAM [44]. On
the one hand, this tandem allows the user of MG5_AMC to switch between two options, namely
between the default code MADLOOP [45] fully integrated directly in the MC distribution package,
and GOSAM. Thus, the user can experience the evaluation of NLO virtual corrections by means
of two alternative solutions corresponding to different algorithms and methods of generation and
evaluation of Feynman amplitudes. On the other hand, GOSAM is interfaced to other Monte Carlo
codes beside MG5_AMC, therefore the user of the MCs can explore and compare the different
features of the event generators, without being biased by the performances of the one-loop provider,
since they all can be run using GOSAM.

The interface is based on the standards of the first BLHA [30]. When running the MG5_AMC
interactive session, the command “set OLP GoSam” changes the employed OLP from its de-
fault MADLOOP to GOSAM. Alternatively, the user should include the line OLP = GoSam by
editing the file input/mg5_configuration.txt. The interface is available starting from
MG5_AMC version 2.3.2.2.

To validate the interface several cross checks were performed. The loop amplitudes of GOSAM

and MADLOOP were compared for single phase space points and also at the level of the total cross
section for a number of different processes, as presented in a dedicated table in [46]. Furthermore,
for pp→ tt̄γγ , a fully independent check was also performed by computing the same distributions
using GOSAM interfaced to SHERPA (see Figure 1).

10−6

10−5

d
σ
/d

p T
,t
(p
b
/G

eV
)

Top quark transverse momentum at LO and NLO

LHC 8 TeV

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400

t
t̄
γ
γ

N
L
O
/
L
O

pT,t (GeV)

LO GoSam+MadGraph5 aMC@NLO

NLO GoSam+MadGraph5 aMC@NLO

10−6

10−5

d
σ
/d

p T
,t
(p
b
/G

eV
)

Top quark transverse momentum at NLO: MC comparison

LHC 8 TeV

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

0 50 100 150 200 250 300 350 400

t
t̄
γ
γ

N
L
O
/
N
L
O

pT,t (GeV)

GoSam+aMC@NLO MG5/GoSam+Sherpa

NLO GoSam+MadGraph5 aMC@NLO
NLO GoSam+Sherpa

Figure 1: Transverse momentum of the top quark in pp → tt̄γγ for the LHC at 8 TeV: LO and
NLO distributions for the transverse momentum of the top quark (left) and NLO comparison between
GOSAM+MG5_AMC and GOSAM+SHERPA (right).

As an application of this novel framework, we computed the NLO QCD corrections to pp→
tt̄H and pp→ tt̄γγ matched to a parton shower [44]. The study is performed using NLO pre-
dictions for tt̄H and continuum tt̄γγ production. The top and anti-top quarks are subsequently
decayed semi-leptonically with MADSPIN [47], taking into account spin correlation effects, and
then showered and hadronised by means of PYTHIA 8.2 [48]. We compared several distributions
to disentangle the two processes and focused in particular on observables designed to study spin
correlation effects. While NLO corrections are sizable and provide a clear reduction of theoretical
uncertainties, they only mildly distort the shape of the various distributions.

4. GOSAM beyond NLO

As the focus of the theoretical particle community is shifting towards NNLO calculations,
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automated codes for the generation and reduction of two-loop virtual amplitudes, as well as for
the computation of real-virtual contributions, will be much needed. It is not yet clear whether at
NNLO the most efficient way to proceed will be targeting full process-independent automation,
as achieved at NLO, or rather developing ad hoc tools for specific classes of processes. While
GOSAM was initially designed and developed to compute one-loop virtual contributions needed
by NLO predictions, several of it features can be adapted and extended to address specific tasks
needed by higher order calculations.

Concerning the generation virtual two-loop matrix elements, the routines in GOSAM have been
extended to produce the full list and expressions for all two-loop Feynman diagrams contributing
to any process: as for the one-loop case, the code depicts all contributing diagrams as output on
file, takes care of the algebra by means of FORM, and projects the expressions over the appropriate
tensor structures, to extract the form factors. Interfaces to codes for the reduction to master integrals
are currently in progress.

GOSAM 2.0 has been already used within NNLO calculations, for the evaluation of the real-
virtual contributions. In particular, the code has been employed in the evaluation of electroweak
production of top-quark pairs in electron-positron annihilation at NNLO in QCD [49,50], and also
to cross-check numerically the analytic expressions obtained within the evaluation of Higgs boson
decay into b-quarks at NNLO accuracy [51].

As a last application beyond NLO, GOSAM has been used for the evaluation of associated pro-
duction of a top-quark pair and a Higgs boson at approximate NNLO in QCD [52]. In this paper,
approximate formulas were obtained by studying soft-gluon corrections in the limit where the par-
tonic center-of-mass energy approaches the invariant mass of the tt̄H final state, where the latter can
be arbitrarily large. The approximate NNLO corrections are extracted from the perturbative infor-
mation contained in a soft-gluon resummation formula valid to NNLL accuracy, whose derivation is
based on SCET (for a recent review, see [53]). The soft-gluon resummation formula for this process
contains three essential ingredients, all of which are matrices in the color space needed to describe
four-parton scattering: a hard function, related to virtual corrections; a soft function, related to real
emission corrections in the soft limit; and a soft anomalous dimension, which governs the struc-
ture of the all-order soft-gluon corrections through the renormalization group (RG). Of these three
ingredients, both the NLO soft function [54] and NLO soft anomalous dimension [55] needed for
NNLL resummation in processes involving two massless and two massive partons can be adapted
directly to tt̄H production. The NLO hard function is instead process-dependent and was evaluated
by using modified versions of the GOSAM, MADLOOP, and OPENLOOPS [56] codes.

5. Integrand Reduction beyond One Loop

The idea of applying the integrand reduction to Feynman integrals beyond one-loop, first ap-
plied in Refs. [57, 58], has been the target of several studies in the past five years, thus providing a
new promising direction in the study of multi-loop amplitudes.

As a basic ingredient for the integrand reduction, a proper parametrization of the residues at the
multi-particle poles of higher-loop integrals in needed [57]. Like the one-loop case, the parametric
form of the polynomial residues should be process-independent and determined once for all from
the corresponding multiple cut. Unlike the one-loop case however, the basis of master integrals
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beyond one-loop is not straightforward. Moreover, the splitting between “spurious” and “physical”
terms in the residues is more tricky due to the presence irreducible scalar products, namely scalar
products involving integration momenta that cannot be reconstructed in terms of denominators.

In Refs. [59,60], the determination of the residues at the multiple cuts has been systematized as
a problem of multivariate polynomial division in algebraic geometry. The use of these techniques
allowed to apply the integrand decomposition not only at one loop, as originally formulated, but at
any order in perturbation theory. Moreover, this approach confirms that the shape of the residues is
uniquely determined by the on-shell conditions, without any additional constraint.

The algorithm presented in Ref. [60] allows to decompose a general loop integrand by means
of a powerful recurrence relation. In general, if the on-shell conditions have no solutions, the
integrand is reducible, namely it can be written in terms of lower point functions. One example
of this class of integrals are the six-point functions at one loop, which are fully reducible to lower
point functions, as well known for a long time [61]. When the on-shell conditions admit solutions,
the corresponding residue is obtained dividing the numerator function modulo the Gröbner basis
of the corresponding cut. The remainder of the division provides the residue, while the quotients
generate integrands with less denominators.

Figure 2: Examples of maximum cuts. With the exception of the first diagram in the left column, which
represents the 5-ple cut of the 5-point one-loop dimensionally regulated amplitude, all the other diagrams in
the table are considered in four dimensions.

A fundamental ingredient that guarantees the consistency of the integrand reduction approach
beyond one-loop is contained in the Maximum Cut Theorem [60]. After defining Maximum-cuts
as the maximum number of on-shell conditions which can be simultaneously satisfied by the loop
momenta, the Maximum Cut Theorem ensures that the corresponding residues can always be re-
constructed by evaluating the numerator at the solutions of the cut, since they are parametrized by
exactly ns coefficients, where ns is the number of solutions of the multiple cut-conditions. This
theorem extends at all orders the features of the one-loop quadruple-cut in dimension four [4,6], in
which two complex solutions of the cut allow for the determination of the two coefficients needed
to parametrize the residue.

In Figure 2, we show the structures of the residues of the maximum cut, together with the
corresponding values of ns, for a selection of diagrams with different number of loops. For each
case, the general structure of the residue ∆ and the corresponding value of ns are provided [60].
Similar conditions can be found for more complicated topologies at higher loops.

The integrand recurrence relation described above can be applied in two ways [62]. Given the
form of all residues, the coefficients which appear in the residues can be determined by evaluating
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the numerator at the solutions of the multiple cuts, as many times as the number of the unknown
coefficients. This approach, which in the paper we labeled fit-on-the-cuts, has been employed at one
loop in the original integrand reduction [6], and the language of multivariate polynomial division
provides its generalization at all loops.

As a very different strategy [62], which we dubbed divide-and-conquer, the decomposition
can be obtained analytically by means of polynomial divisions. This approach does not require
prior knowledge of the parametric form of the residues or the solutions of the multiple cuts, and the
reduction algorithm is applied directly to the expressions of the numerator functions. It is worth
noticing that this strategy can be successfully applied to integrands with denominators appearing
with multiple powers, which represented a long-standing problem within unitarity-based methods.

6. Conclusions and Future Outlook

Integrand-reduction techniques played an important role in the development of automated
codes for NLO calculations. Algorithms such as the integrand-level OPP reduction, D-dimensional
integrand reduction, integrand reduction via Laurent expansion, which we described in the first part
of this presentation, are now embedded and interfaced within Monte Carlo tools that allow users
to compute cross sections and distributions for a wide variety of processes at NLO accuracy, as
needed by the LHC experimental collaborations.

The developments of the past decade also showed how a better understanding of the mathe-
matical properties of scattering amplitudes eventually provides the foundations for the construction
of efficient algorithms for their evaluation. Looking ahead, as the focus of the community is shift-
ing towards the challenges presented by NNLO calculations, new ideas and techniques, along with
improved version of known algorithms, will represent alternatives, cross-checks, and ultimately
new solutions to known problems. In this context, it will be interesting to observe whether the ex-
tensions of integrand-level techniques to higher orders will succeed to provide a comparable level
of reliability, and eventually of automation, as in the one-loop case, and to what extent the GOSAM

framework could be extended to explore the new frontiers in precision calculations.

Acknowledgments I would like to thank the present and former members of the GOSAM Col-
laboration for their many contributions to the results presented in this talk. I would also like to
acknowledge Alessandro Broggio, Andrea Ferroglia, Rikkert Frederix, and Valentin Hirschi for
stimulating discussions and for providing new opportunities for the use of the GOSAM framework.
Work supported in part by the National Science Foundation under Grants PHY-1068550 and PHY-
1417354 and by the PSC-CUNY Awards No. 67536-00 45 and No. 68687-00 46.

References

[1] G. Passarino and M. J. G. Veltman, One Loop Corrections for e+ e− Annihilation Into µ+ µ− in the
Weinberg Model, Nucl. Phys. B160 (1979) 151; G. ’t Hooft and M. Veltman, Scalar One Loop
Integrals, Nucl.Phys. B153 (1979) 365–401.

[2] G. van Oldenborgh, FF: A Package to evaluate one loop Feynman diagrams, Comput.Phys.Commun.
66 (1991) 1–15; T. Hahn and M. Perez-Victoria, Automatized one loop calculations in
four-dimensions and D-dimensions, Comput.Phys.Commun. 118 (1999) 153–165,

9



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
3
9

Integrand-reduction techniques for NLO and beyond Giovanni Ossola

[hep-ph/9807565]; R. K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02
(2008) 002, [arXiv:0712.1851]; A. van Hameren, OneLOop: For the evaluation of one-loop
scalar functions, Comput.Phys.Commun. 182 (2011) 2427–2438, [arXiv:1007.4716]; G. Cullen,
J. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, et. al., Golem95C: A library for one-loop integrals
with complex masses, Comput.Phys.Commun. 182 (2011) 2276–2284, [arXiv:1101.5595].

[3] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, One-Loop n-Point Gauge Theory Amplitudes,
Unitarity and Collinear Limits, Nucl. Phys. B425 (1994) 217–260, [hep-ph/9403226].

[4] R. Britto, F. Cachazo, and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4
super-Yang-Mills, Nucl. Phys. B725 (2005) 275–305, [hep-th/0412103].

[5] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 0407
(2004) 017, [hep-ph/0404120].

[6] G. Ossola, C. G. Papadopoulos, and R. Pittau, Reducing full one-loop amplitudes to scalar integrals
at the integrand level, Nucl.Phys. B763 (2007) 147–169, [hep-ph/0609007].

[7] G. Ossola, C. G. Papadopoulos, and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP
0707 (2007) 085, [arXiv:0704.1271].

[8] G. Ossola, C. G. Papadopoulos, and R. Pittau, On the Rational Terms of the one-loop amplitudes,
JHEP 0805 (2008) 004, [arXiv:0802.1876].

[9] G. Ossola, C. G. Papadopoulos, and R. Pittau, CutTools: a program implementing the OPP reduction
method to compute one-loop amplitudes, JHEP 03 (2008) 042, [arXiv:0711.3596].

[10] P. Draggiotis, M. Garzelli, C. Papadopoulos, and R. Pittau, Feynman Rules for the Rational Part of the
QCD 1-loop amplitudes, JHEP 0904 (2009) 072, [arXiv:0903.0356]; M. Garzelli, I. Malamos,
and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the Rxi
gauge and in the Unitary gauge, JHEP 1101 (2011) 029, [arXiv:1009.4302]; M. Garzelli and
I. Malamos, R2SM: A Package for the analytic computation of the R2 Rational terms in the Standard
Model of the Electroweak interactions, Eur.Phys.J. C71 (2011) 1605, [arXiv:1010.1248].

[11] R. K. Ellis, W. T. Giele, and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop
Amplitudes, JHEP 03 (2008) 003, [arXiv:0708.2398]; W. T. Giele, Z. Kunszt, and K. Melnikov,
Full one-loop amplitudes from tree amplitudes, JHEP 0804 (2008) 049, [arXiv:0801.2237];
R. Ellis, W. T. Giele, Z. Kunszt, and K. Melnikov, Masses, fermions and generalized D-dimensional
unitarity, Nucl.Phys. B822 (2009) 270–282, [arXiv:0806.3467].

[12] P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, Scattering AMplitudes from Unitarity-based
Reduction Algorithm at the Integrand-level, JHEP 1008 (2010) 080, [arXiv:1006.0710].

[13] W. Giele and G. Zanderighi, On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic
Case, JHEP 0806 (2008) 038, [arXiv:0805.2152].

[14] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with
one hard jet at hadron colliders, Nucl.Phys. B840 (2010) 129–159, [arXiv:1004.3284].

[15] P. Mastrolia, G. Ossola, C. Papadopoulos, and R. Pittau, Optimizing the Reduction of One-Loop
Amplitudes, JHEP 0806 (2008) 030, [arXiv:0803.3964].

[16] H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, et. al., NLO QCD corrections to
the production of Higgs plus two jets at the LHC, Phys.Lett. B721 (2013) 74–81,
[arXiv:1301.0493].

10

http://xxx.lanl.gov/abs/hep-ph/9807565
http://xxx.lanl.gov/abs/0712.1851
http://xxx.lanl.gov/abs/1007.4716
http://xxx.lanl.gov/abs/1101.5595
http://xxx.lanl.gov/abs/hep-ph/9403226
http://xxx.lanl.gov/abs/hep-th/0412103
http://xxx.lanl.gov/abs/hep-ph/0404120
http://xxx.lanl.gov/abs/hep-ph/0609007
http://xxx.lanl.gov/abs/0704.1271
http://xxx.lanl.gov/abs/0802.1876
http://xxx.lanl.gov/abs/0711.3596
http://xxx.lanl.gov/abs/0903.0356
http://xxx.lanl.gov/abs/1009.4302
http://xxx.lanl.gov/abs/1010.1248
http://xxx.lanl.gov/abs/0708.2398
http://xxx.lanl.gov/abs/0801.2237
http://xxx.lanl.gov/abs/0806.3467
http://xxx.lanl.gov/abs/1006.0710
http://xxx.lanl.gov/abs/0805.2152
http://xxx.lanl.gov/abs/1004.3284
http://xxx.lanl.gov/abs/0803.3964
http://xxx.lanl.gov/abs/1301.0493


P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
3
9

Integrand-reduction techniques for NLO and beyond Giovanni Ossola

[17] G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, et. al., NLO QCD corrections to
Higgs boson production plus three jets in gluon fusion, Phys.Rev.Lett. 111 (2013) 131801,
[arXiv:1307.4737].

[18] P. Mastrolia, E. Mirabella, and T. Peraro, Integrand reduction of one-loop scattering amplitudes
through Laurent series expansion, JHEP 1206 (2012) 095, [arXiv:1203.0291].

[19] H. van Deurzen, Associated Higgs Production at NLO with GoSam, Acta Phys.Polon. B44 (2013),
no. 11 2223–2230.

[20] T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes,
Comput.Phys.Commun. 185 (2014) 2771–2797, [arXiv:1403.1229].

[21] H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, et. al., Multi-leg One-loop Massive
Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 1403 (2014) 115,
[arXiv:1312.6678].

[22] H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, et. al., NLO QCD corrections to
Higgs boson production in association with a top quark pair and a jet, Phys.Rev.Lett. 111 (2013)
171801, [arXiv:1307.8437].
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