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The NNLO counterterm contributions to B(B̄→ Xsγ) for an arbitrary charm quark mass

1. Introduction

Being loop-generated by the quark-level b→ sγ flavour-changing neutral current transition in
the Standard Model (SM), the inclusive B̄→ Xsγ decay is known as a well-established means to
constrain parameter spaces of Beyond-SM (BSM) models. Sample Leading Order (LO) diagrams
for b→ sγ in the SM, multi-Higgs doublet models and the Minimal Supersymmetric Standard
Model (MSSM) are shown in Fig. 1. One can see that the SM contribution is of the same perturba-
tive order as the possible BSM ones.

Figure 1: Sample LO diagrams for b→ sγ in the SM (a), multi-Higgs doublet models (b), and the
MSSM (c).

The present SM prediction for the CP- and isospin-averaged branching ratio of the considered
process reads BSM

sγ = (3.36±0.23) ·10−4 [1, 2]. It agrees very well with the current experimental
world average that, depending on the source, equals to Bexp

sγ = (3.43±0.22) ·10−4 [3] or Bexp
sγ =

(3.41± 0.16) · 10−4 [4]. The resulting 95% C.L. bound on the charged Higgs boson mass in the
Two-Higgs-Doublet Model II is in the vicinity of 500 GeV [1, 4].

All the quoted results for the branching ratio correspond to the Eγ > E0 = 1.6GeV cut on
the photon energy in the decaying meson rest frame. For larger values of E0, theoretical calcu-
lations would become less precise due to nonperturbative uncertainties that scale with powers of
ΛQCD/(mb− 2E0). On the other hand, the experimental errors grow for smaller Eγ due to sub-
traction of a larger and more uncertain background. The actual measurements are performed with
E0 ∈ [1.7,2.0]GeV, and extrapolations in E0 are performed for evaluation of the world averages.
The two above-mentioned averages differ in their approach to the extrapolation.

As far as the SM prediction uncertainty is concerned, it has been obtained by combining in
quadrature four types of uncertainties: (i) nonperturbative (5%) [5], (ii) parametric (2%), (iii)
higher-order (O(α3

s )) perturbative (3%), and (iv) the one stemming from an interpolation in the
charm quark mass that is used to estimate some of the O(α2

s ) corrections (3%) [2].
In the near future, the experimental accuracy is going to improve in a significant manner, after

the Belle-II experiment [6] begins collecting data. Consequently, the SM calculations must also be
upgraded to match the expected experimental precision.

In the present work, we focus on a calculation that contributes to removing the fourth type of
uncertainty, namely the one due to the interpolation in mc. To define the corrections in question, let
us write the perturbative rate of the weak radiative b-quark decay as

Γ(b→ Xpartonic
s γ) =

G2
Fm5

b,poleαem

32π4 |V ∗tsVtb|2 ∑
i, j

Ci(µb)C j(µb)Ĝi j, (1.1)

where Xpartonic
s stands for s,sg,sgg,sqq̄, . . . with q = u,d,s. The Wilson coefficients Ci(µb) play

the role of coupling constants in the effective Lagrangian Lweak ∼ ∑iCiQi that describes flavour-
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Figure 2: Sample diagrams for Ĝ(2)
27 with unitarity cuts indicated by the dashed lines.

changing weak interactions below the W -boson decoupling scale. For our purpose, only three
operators Qi are relevant, namely

Q1 = (s̄LγµT acL)(c̄Lγ
µT abL), Q2 = (s̄LγµcL)(c̄Lγ

µbL), Q7 =
emb
16π2 (s̄Lσ

µνbR)Fµν . (1.2)

Both αs and the Wilson coefficients are MS-renormalized at the low-energy scale µb ∼ mb/2 for
the decay rate evaluation. The quantities Ĝi j in Eq. (1.1) describe interferences of amplitudes
generated by the operators Qi and Q j. They are perturbatively expanded as follows

Ĝi j = Ĝ(0)
i j + α̃sĜ

(1)
i j + α̃

2
s Ĝ(2)

i j +O(α3
s ), (1.3)

where α̃s = αs(µb)/(4π). Their global normalization is fixed by the condition Ĝ(0)
77 = eγεΓ(2−

ε)/Γ(2−2ε) in D = 4−2ε dimensions, with γ denoting the Euler-Mascheroni constant.
Some of the most important Next-to-Next-to-Leading-Order (NNLO) QCD corrections origi-

nate from the interference terms Ĝ(2)
17 and Ĝ(2)

27 . These terms depend only on E0, µb and the quark
mass ratio z = m2

c/m2
b, provided the light (q = u,d,s) quark masses are neglected. Sample Feyn-

man diagrams contributing to Ĝ(2)
27 are shown in Fig. 2. The considered interference is represented

there in terms of propagator diagrams with unitarity cuts corresponding to the two-, three- and
four-particle final states. Altogether, around 850 of such four-loop diagrams need to be evaluated
for generic values of z and E0, which constitutes an extremely demanding task.

So far, the calculations have been completed only in two limiting cases. In Refs. [7, 8], the
quantities Ĝ(2)

17 and Ĝ(2)
27 were determined for mc � mb/2 and arbitrary E0. In Ref. [2], the same

quantities were evaluated for mc = 0 and E0 = 0. Next, an interpolation between these two limits
was performed to arrive at an estimate for the considered correction at the physical value of mc

and with E0 = 1.6GeV. This is illustrated in Fig. 3 where we plot the relative contribution to
the branching ratio Bsγ , namely U =

(
∆Bsγ(

√
z,0)−∆Bsγ(0,0)

)
/Bsγ , with ∆Bsγ(mc/mb,E0)

denoting the interpolated part of the NNLO correction to Bsγ – see Ref. [2] for more details.
It is evident from Fig. 3 that the interpolated contribution to the branching ratio is sizeable,

amounting to around 5% of Bsγ at the physical value of mc/mb. As already mentioned, the associ-
ated uncertainty has been estimated at the ±3% level, which gives a significant contribution to the
overall uncertainty of the SM prediction. Thus, efforts to calculate the considered correction for an
arbitrary value of mc should be continued.

2. The z-dependent counterterms for Ĝ(2)
17 and Ĝ(2)

27

Here, we report on an arbitrary-mc evaluation of all the necessary ultraviolet-counterterm di-
agrams that matter for the renormalized Ĝ(2)

i7 with i = 1,2. Such counterterms need to be added

3
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Figure 3: Illustration of the interpolation in mc (Fig. 4 of Ref. [2]). The solid line describes the
interpolated function U (see the text), while the dashed line shows its known asymptotic behaviour
for mc� mb/2. The vertical line corresponds to the physical value of mc/mb.

to the bare contributions Ĝ(2)bare
i7 . A complete renormalization formula for the z = 0 case was pre-

sented in Section 2.2 of Ref. [2]. Following that approach, we skip charm quark loops on the gluon
lines (and the corresponding counterterms), as they are already known from Ref. [9]. Then the
renormalization formula for arbitrary z takes the following form:

α̃s Ĝ(1)
i7 + α̃

2
s Ĝ(2)

i7 = ZOS
b ZOS

m Z77

{
α̃

2
s s3ε Ĝ(2)bare

i7 +(ZOS
m −1)sε

[
Zi4 Ĝ(0)m

47 + α̃s sε Ĝ(1)m
i7

]
+ α̃s (ZOS

G −1)s2ε Ĝ(1)3P
i7 +Zi7 ZOS

m

[
Ĝ(0)

77 + α̃s sε Ĝ(1)bare
77

]
+ α̃s Zi8 sε Ĝ(1)bare

78 + ∑
j=1,...,6,11,12

Zi j sε

[
Ĝ(0)

j7 + α̃s sε Z2
g Ĝ(1)bare

j7

]

+ 2α̃ss2ε(Zm−1)z
d
dz

Ĝ(1)bare
i7

}
+ O(α̃3

s ), (2.1)

It differs from the z = 0 case only in the last line where the charm quark mass is renormalized.
The l.h.s. of Eq. (2.1) corresponds to MS-renormalizing αs, mc and the Wilson coefficients at the
scale µb, while the b-quark mass and the external quark fields are renormalized on-shell. In the
on-shell renormalization constants (Eq. (2.8) of Ref. [2]), as well as in Eq. (2.1) here, one should
substitute s = µ2

b/m2
b. The remaining renormalization constants are the MS-scheme ones (Eq. (2.9)

of Ref. [2]), including Zm = 1−4α̃s/ε +O(α̃2
s ).

The renormalization scale for Ĝkl on the r.h.s. of Eq. (2.1) has been set to µ2 = eγm2
b/(4π).

These quantities involve indices corresponding to the operators listed in Eqs. (1.6) and (2.5) of
Ref. [2], in particular to the so-called evanescent ones

Q11 = (s̄Lγµ1γµ2γµ3T acL)(c̄Lγ
µ1γ

µ2γ
µ3T abL)−16Q1,

Q12 = (s̄Lγµ1γµ2γµ3cL)(c̄Lγ
µ1γ

µ2γ
µ3bL)−16Q2. (2.2)

In some of the bare interference terms in Eq. (2.1), the superscript “bare” has been replaced by
either “3P” or “m”, which means that either only the three-particle cuts were included (3P), or one
of the b-quark propagators was squared (m) for the purpose of the b-quark mass renormalization.

All the necessary bare Ĝkl for z = 0 can be found in Eqs. (2.3)-(2.7) of Ref. [2]. Only
the following ones actually do depend on z: Ĝ(2)bare

i7 , Ĝ(1)bare
i7 , Ĝ(1)3P

i7 , Ĝ(1)m
i7 , for i = 1,2, and

4
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Figure 4: Sample diagrams for Ĝ(1)bare
27 with unitarity cuts indicated by the dashed lines.

Ĝ(1)bare
7 j , for j = 11,12. Simple colour-factor considerations imply that Ĝ(1)bare

17 = −1
6 Ĝ(1)bare

27 ,

Ĝ(1)3P
17 = −1

6 Ĝ(1)3P
27 , Ĝ(1)m

17 = −1
6 Ĝ(1)m

27 , and Ĝ(1)bare
7(11) = −1

6 Ĝ(1)bare
7(12) . Moreover, a compact identity

relates Ĝ(1)bare
7(12) to several components of Ĝ(1)bare

27 as follows:

Ĝ(1)bare
7(12) =−4ε

{
(1+ ε)Ĝ(1)2P(d)

27 +(5+ ε)
[
Ĝ(1)2P(u)

27 + Ĝ(1)3P
27

]}
, (2.3)

where Ĝ(1)2P(d)
27 and Ĝ(1)2P(u)

27 denote the two-particle-cut contributions to Ĝ(1)bare
27 that come with

the down-type and up-type quark electric charges, respectively.
Thus, what remains to be found for a complete z 6= 0 calculation of the counterterm contribu-

tions are the six quantities on the r.h.s. of the following two equations:

Ĝ(1)bare
27 = Ĝ(1)2P(d)

27 + Ĝ(1)2P(u)
27 + Ĝ(1)3P

27 , (2.4)

Ĝ(1)m
27 = Ĝ(1)m,2P(d)

27 + Ĝ(1)m,2P(u)
27 + Ĝ(1)m,3P

27 . (2.5)

They need to be calculated up to O(ε). The case of Eq. (2.5) has not been considered so far for
arbitrary z. However, Eq. (2.4) is related to Ref. [10] where the NLO calculations of Refs. [11–15]
(see Fig. 4) were extended to one more order in ε . In Section 4, we shall compare our results to
Ref. [10].

3. Determination and evaluation of the master integrals

To evaluate all the ingredients of Eqs. (2.4) and (2.5), we have reduced the relevant interference
terms to Master Integrals (MIs), using the standard Integration-By-Parts (IBP) methods [16–18]
implemented in the code FIRE [19, 20]. Our MIs are collected in Tab. 1. Dots on the propagators
indicate that they are squared. Arrows in I16 indicate an irreducible numerator.

After the reduction, each of the considered interference terms becomes a linear combination
of the master integrals

Ĝ(1)2P(d)
27 =Re

8

∑
k=1

AkIk, Ĝ(1)2P(u)
27 = Re

13

∑
k=1

BkIk, Ĝ(1)3P
27 = Re

18

∑
k=14

CkIk,

Ĝ(1)m,2P(d)
27 =Re

9

∑
k=1

DkIk, Ĝ(1)m,2P(u)
27 = Re

13

∑
k=1

EkIk, Ĝ(1)m,3P
27 = Re

18

∑
k=14

FkIk. (3.1)

Our explicit expressions for the coefficients Ak, . . .Fk can be found in Refs. [21, 22].
In our first approach, we numerically evaluate the MIs using the Differential Equation (DE)

method [23–25]. The set of MIs in Tab. 1 turns out to be closed under differentiation with respect

5
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The NNLO counterterm contributions to B(B̄→ Xsγ) for an arbitrary charm quark mass

I1 I7 I13x

I2 I8 I14x
x

I3 I9 I15
x

I4 I10 I16
x

I5 I11 I17

I6 I12 I18

Table 1: Master integrals contributing to the NNLO counterterms with possible two-particle and
three-particle cuts indicated by the vertical dashed lines. Thick solid, thin solid and dotted internal
lines denote b-quark, c-quark and s-quark propagators, respectively. Thick solid external lines
come with the momentum p such that p2 = m2

b.

to z (if it was not, it could be appropriately extended). In consequence, we obtain a system of
differential equations [21, 22] that can be numerically solved starting from initial conditions at
large z. It cannot be done along the real axis due to presence of spurious singularities, but rather
along ellipses in the complex plane. The initial conditions are found using asymptotic expansions,
which effectively reduces our three-loop two-scale problem to a two-loop single-scale one. The
asymptotic expansions are evaluated in an automatic manner using the code exp [26, 27].

Once the numerical solutions are found, we test them by evaluating the MIs either fully ana-
lytically or as expansions in powers of either z or 1/z. This is achieved with the help of Feynman
and Schwinger parameterizations, Mellin-Barnes representations, as well as the DEs themselves
for the cases when they can be solved in an analytical manner. The DEs are also used to extend
power series in z or 1/z to higher orders [21, 22].

4. Results

Our final results are parameterized in terms of eight functions of z as follows

Ĝ(1)2P
27 ≡ Ĝ(1)2P(d)

27 + Ĝ(1)2P(u)
27 = − 92

81ε
+ f0(z)+ ε f1(z)+O(ε2), (4.1)

Ĝ(1)3P
27 = g0(z)+ εg1(z)+O(ε2), (4.2)

Ĝ(1)m,3P
27 = j0(z)+ ε j1(z)+O(ε2), (4.3)

6
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Figure 5: Plots of the functions defined in Eqs. (4.1)-(4.4). See the text.

Ĝ(1)m,2P
27 ≡ Ĝ(1)m,2P(d)

27 + Ĝ(1)m,2P(u)
27

= − 1
3ε2 −

1
ε

(
1+

4π2

81
+2z

)
+ r0(z)+ εr1(z)+O(ε2). (4.4)

Their dependence on z is displayed in Fig. 5. Each of the (blue) dots represents a particular final
value of the numerical solution of the DEs. The physical point in the vicinity of z = 0.06 is marked
by a bigger (red) dot. Similar (red) dots on the vertical axes show the limits at z→ 0 whenever

7
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they are finite, i.e. for all the functions except ji(z). These limits are known from the z = 0
calculation [2]:

{ f0, f1,g0,g1,r0,r1}
z→0−→

{
−1942

243 , −
26231
729 + 259

243 π
2, − 4

27 , −
106
81 ,

35
9 −

161
972 π

2− 40
27 ζ (3), 2521

54 + 2135
2916 π

2− 65
81 ζ (3)− 7

81 π
4} . (4.5)

A nice convergence to these limits is visible in our logarithmic-scale plots. In the case of Ĝ(1)m,3P
27 ,

one finds [2, 22]

Ĝ(1)m,3P
27 (z = 0) = 20

27ε
+ 770

81 +
(18191

243 −
35
27 π

2)
ε +O(ε2), (4.6)

which contains an 1/ε divergence, contrary to Eq. (4.3). It arises due to the logarithmic divergences
of the functions ji(z) at z→ 0 [28]. Such non-commuting limits are often encountered in the
framework of dimensional regularization.

The solid (blue) lines in the first six plots of Fig. 5 show the expansions in 1/z for z > 20.
They have served as the boundary conditions for the DEs at z = 20. The remaining (green) solid
lines describe expansions either in z (for z < 1

4 ) or in 1
z (for z > 1

4 ) that have been obtained in our
analytical approach. For fi(z), the expansion plots are terminated away from the threshold at z = 1

4
because they become inaccurate in its vicinity. In the three-body cases (gi(z), ji(z)) the expansions
are so accurate that their mismatch at z = 1

4 is invisible within the plot resolution. The expansion
depth in the small-z case was up to O(z30) and O(z15) for the three- and two-body contributions,
respectively. Similarly, the large-z expansions were calculated up to O(1/z30) and O(1/z15) in the
three- and two-body cases, respectively. All these terms are included in the plots. An exception is
g0(z) for which we know (and plot) the fully analytical result:

g0(z) =

−
4

27 −
14
9 z+ 8

3 z2 + 8
3 z(1−2z)sL + 16

9 z(6z2−4z+1)
(

π2

4 −L2
)
, for z≤ 1

4 ,

− 4
27 −

14
9 z+ 8

3 z2 + 8
3 z(1−2z) t A + 16

9 z(6z2−4z+1)A2, for z > 1
4 ,

(4.7)

with s =
√

1−4z, L = ln(1+ s)− 1
2 ln4z, t =

√
4z−1, and A = arctan(1/t). Our expansions in

z and/or 1/z for all the other functions can be found in Refs. [21, 22].
In the cases of f0, f1 and g0, our results are in agreement with Ref. [10]. As far as g1 is

concerned, no comparison is possible because our phase-space integrals have been evaluated in
D dimensions, contrary to the four-dimensional approach of Ref. [10]. The method of reverse
unitarity [29] that we apply in the IBP reduction makes the D-dimensional phase-space integration
unavoidable.

5. Summary

We have determined the charm-quark mass dependence of all the necessary ultraviolet coun-
terterm diagrams that contribute to the yet-unknown parts of the NNLO QCD corrections Ĝ(2)

17 and
Ĝ(2)

27 to the weak radiative B-meson decay branching ratio. These corrections originate from in-
terferences of the current-current (Q1,2) and photonic dipole (Q7) operators. At present, they are
estimated using an interpolation in mc, which generates one of the the main uncertainties in the
perturbative contribution to BSM

sγ .

8



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
4
9

The NNLO counterterm contributions to B(B̄→ Xsγ) for an arbitrary charm quark mass

The current experimental determination of Bsγ agrees with the SM prediction within uncer-
tainties that are similar on the experimental and theoretical sides, and amount to around 7% each.
A factor-of-two reduction on each side is feasible in the near future. In the experimental case, it is
likely to come from high-statistics measurement using the hadronic tag for the recoiling B-meson,
which essentially eliminates the so-called continuum background. Such measurements have been
statistics-limited so far. On the theory side, the two main issues are re-considering the estimates
of nonperturbative effects, and eliminating the mc-interpolation in the perturbative NNLO con-
tributions. Our calculation has contributed to a future resolution of the latter issue. However, a
phenomenological use of our results will be possible only after determination of the bare NNLO
contributions to the considered interference terms, namely Ĝ(2)bare

17 and Ĝ(2)bare
27 .

A numerical calculation of the bare NNLO contributions is potentially achievable using the
same techniques as described in the present work. However, it is considered a demanding task. In
the two-particle-cut case alone, one encounters around 20000 scalar integrals, and around 500 MIs.
Many yet-unknown single-scale MIs are expected to show up in the boundary conditions for the
DEs in these calculations.
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