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1. Introduction

Precision studies at collider experiments require a thorough understanding of strong-inter-
action effects. Whenever the QCD radiation is confined to jet-like configurations, the perturbative
expansion in the strong coupling is spoiled by large logarithmic corrections. These Sudakov loga-
rithms have to be resummed to all orders, which can be achieved e.g. on the basis of effective field
theory methods. The relevant effective theory is called Soft-Collinear Effective Theory (SCET)
[1 – 3], which allows one to systematically disentangle the effects from hard, collinear and soft
QCD radiation.

In this work we consider dijet soft functions, which encode the effects from soft radiation
in processes with two back-to-back jets. We aim at computing the soft functions to next-to-next-
to-leading order (NNLO) in the perturbative expansion. Specifically, we will compute the two-
loop soft anomalous dimension as well as the finite term of the renormalised soft function, which
are important ingredients for next-to-next-to-leading logarithmic (NNLL) and N3LL resummation,
respectively.

In the last few years the computation of soft functions has attracted considerable attention.
Whereas previous NNLO calculations [4 – 15] were performed analytically on a case-by-case ba-
sis, we for the first time present a systematic method for the automated (numerical) evaluation of
generic dijet soft functions. Similar efforts for the automated extraction of hard functions are un-
der way [16], which may ultimately lead to fully automated resummations in SCET. Automated
resummations for generic jet observables have so far only been performed with QCD techniques to
NLL accuracy [17]. The method has recently been extended to NNLL for e+e− observables [18].

2. Dijet soft functions

We are concerned with dijet soft functions, which can generically be written in the form

S(τ,µ) =
1

Nc
∑
X

M (τ;{ki}) Tr 〈0|S†
n̄Sn|X〉〈X |S†

nSn̄|0〉 , (2.1)

where Sn and Sn̄ are soft Wilson lines extending along two light-like directions nµ and n̄µ with
n · n̄ = 2. The definition involves a trace over colour indices and a generic measurement function
M (τ,{ki}) that provides a constraint on the soft radiation {ki} according to the observable under
consideration. In order to avoid complications with distribution-valued expressions, we assume that
the measurement function is formulated in Laplace (or Fourier) space. We will mostly focus on
e+e− event-shape variables in the following, but the definition also includes (0-jet) hadron collider
soft functions with an appropriate time (or anti-time) ordering of the Wilson lines.

In dimensional regularisation (DR) with d = 4−2ε , the matrix element contains explicit diver-
gences from virtual corrections as well as implicit divergences from real radiation (which become
explicit after integration over phase space). The important point to note is that the structure of the
implicit divergences is independent of the observable. We may therefore isolate the divergences
with a universal phase-space parametrisation, and compute the observable-dependent coefficients
in the ε-expansion numerically. Beyond one-loop order the phase-space integrals contain overlap-
ping divergences, which we disentangle with a sector decomposition strategy [19].
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3. NLO calculation

At tree level only the vacuum state contributes, and we assume that the measurement function
is normalised to one. The soft function can up to two-loop order be written as

S(τ,µ) = 1+
(

Zααs

4π

)
(µ2

τ̄
2)ε S1(ε)+

(
Zααs

4π

)2

(µ2
τ̄

2)2ε S2(ε)+O(α3
s ) , (3.1)

where τ̄ = τeγE and αs is the MS-renormalised coupling, which is related to the bare coupling
constant α0

s via Zααs µ2ε = e−εγE (4π)εα0
s with Zα = 1−β0αs/(4πε) and β0 = 11/3CA−4/3TFn f .

At NLO the computation involves one-loop virtual corrections to the vacuum state and one-gluon
real emission diagrams. The virtual corrections are scaleless and vanish in DR. Denoting the gluon
momentum by kµ , the real emission contribution takes the form

S1(ε) =
(4πeγE τ2)−ε

(2π)d−1

∫
ddk δ (k2)θ(k0)M (τ;k) |A (k)|2 . (3.2)

At NLO the squared matrix element is given by

|A (k)|2 = 64π2CF

k+k−
(3.3)

with k+ = n · k and k− = n̄ · k. In order to disentangle the singularity structure, we split the integra-
tion region into two hemispheres with k− > k+ (left) and k+ > k− (right). In the left hemisphere
we substitute

k− =
kT√

y
, k+ = kT

√
y , (3.4)

in terms of the magnitude of the transverse momentum kT =
√

k+k− and a measure of the rapidity
y = k+/k−. We then impose the principal assumption of our approach, namely that the NLO
measurement function can be written in the generic form

M (τ;k) = exp
(
− τ kT yn/2 f (y,θ)

)
, y ∈ {0,1} . (3.5)

The exponential arises from the Laplace transformation of the momentum-space measurement
function. We assume that the Laplace variable τ has the dimension 1/mass, which fixes the linear
dependence on kT on dimensional grounds. The measurement function may further have a non-
trivial angular dependence, since the measurement may not necessarily be performed with respect
to the jet axis. If so, we project the measurement vector vµ onto the transverse plane and introduce
θ as the angle between vµ

⊥ and kµ

⊥. Finally, the power n is fixed by the requirement that the function
f (y,θ) is finite and non-zero in the collinear limit y→ 0. Table 1 reveals that the form (3.5) is a
general ansatz, as many observables of varying degrees of complexity fall within its domain.

In the right hemisphere we proceed similarly with the role of k− and k+ interchanged. As-
suming that the measurement function is symmetric under the exchange of n↔ n̄, we arrive at the
following master formula for the calculation of NLO dijet soft functions

S1(ε) =
8CF e−γE ε

√
π

Γ(−2ε)

Γ(1/2− ε)

∫ 1

0
dy y−1+nε

∫ 1

−1
d cosθ sin−1−2ε

θ [ f (y,θ)]2ε . (3.6)

3
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Soft function n f (y,θ)

Thrust [21] 1 1

Angularities [22] 1−A 1

Recoil-free broadening [23] 0 1/2

C-parameter [24] 1 1/(1+ y)

Threshold Drell-Yan [25] −1 1+ y

W@large pT [26] -1 1+ y−2
√

y cosθ

e+e− transverse thrust [27] 1 1
s
√

y

(√
(ccosθ +

(
1√
y −
√

y
)

s
2

)2
+1− cos2 θ −

∣∣∣ccosθ +
(

1√
y −
√

y
)

s
2

∣∣∣)
Table 1: Sample soft functions that fall within our ansatz of the measurement function (3.5), and their
corresponding expressions for n and f (y,θ). In the last line we used s = sinθB and c = cosθB, where θB is
the angle between the beam and the jet axis.

As desired, the singularity structure of the soft function has been completely factorized. The soft
singularity in the limit kT → 0 gives rise to the factor Γ(−2ε), and the collinear singularity in the
limit y→ 0 is encoded in the factor y−1+nε (note that the function f (y,θ) is finite by construction
in this limit). We further observe that the collinear singularity is not regularised for n = 0, which
corresponds to a SCET-2 soft function. It is well understood that SCET-2 observables require
an additional rapidity regulator, which can easily be implemented in our approach in the form
proposed e.g. in [20].

4. NNLO calculation

At NNLO the computation involves two-loop virtual, mixed real-virtual and double real emis-
sion diagrams. The two-loop virtual corrections are again scaleless and vanish in DR. The matrix
element of the real-virtual corrections reads

|ARV (k)|2 =−64π
2 CACF (µ

2eγE )ε π2 Γ(−ε) cot(πε)

Γ(−2ε) sin(πε)
k−1−ε
+ k−1−ε

− . (4.1)

As the structure is similar to the NLO calculation, we can procced along the same lines and obtain

SRV
2 (ε) =−8CACF e−2γE ε π3/2 Γ(−ε)Γ(−4ε) cot(πε)

Γ(−2ε)Γ(1/2− ε) sin(πε)

×
∫ 1

0
dy y−1+2nε

∫ 1

−1
d cosθ sin−1−2ε

θ [ f (y,θ)]4ε . (4.2)

The matrix element of the double real emission contribution consists of three colour structures:
C2

F , CFCA and CFTFn f . We assume that the measurement function is consistent with non-abelian

4
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exponentiation [28, 29],
M (τ;k, l) = M (τ;k) M (τ; l) , (4.3)

and so the C2
F contribution can be expressed in terms of the NLO expression (3.6). For the remain-

ing colour structures, we start from

SRR
2 (ε) =

(4πeγE τ2)−2ε

(2π)2d−2

∫
ddk δ (k2)θ(k0)

∫
dd l δ (l2)θ(l0) M (τ;k, l) |ARR(k, l)|2 . (4.4)

The squared matrix element of the CFTFn f contribution is given by

|ARR(k, l)|2 = 2048π
4CFTFn f

2k · l (k−+ l−)(k++ l+)− (k−l+− k+l−)2

(k−+ l−)2 (k++ l+)2 (2k · l)2 , (4.5)

and the corresponding expression for the CFCA colour structure can be found e.g. in [11]. Unlike
the NLO case, the singularity structure is non-trivial and there exist overlapping divergences e.g. in
the limit k− → 0 and l− → 0. In order to disentangle the singularity structure of the double real
emission contribution, we parametrise the phase-space integrals in terms of the variables

p− = k−+ l− , a =

√
k−l+
k+l−

,

p+ = k++ l+ , b =

√
k−k+
l−l+

. (4.6)

Here p− and p+ are the total light-cone momenta, a is a measure of the rapidity difference of the
two emitted partons, and b is the ratio of their transverse momenta. The matrix element in addition
depends on the angle θkl between kµ

⊥ and lµ

⊥, and the measurement function may introduce two
further angles between the measurement vector vµ

⊥ and kµ

⊥ (θk), and vµ

⊥ and lµ

⊥ (θl). As in the
NLO calculation, we substitute pT =

√
p+p− and y = p+/p−. We further assume that the NNLO

measurement function can be cast into the form

M (τ;k, l) = exp
(
− τ pT yn/2 F(a,b,y,θk,θl)

)
, a,b,y ∈ {0,1} . (4.7)

The linear dependence on pT is again fixed on dimensional grounds, and the factor yn/2 is a conse-
quence of the property (4.3) and the structure of the NLO measurement function (3.5). The function
F(a,b,y,θk,θl) encodes the non-trivial dependence on the observable at NNLO, and it is finite and
non-zero in the limit y→ 0. One can easily derive the corresponding expressions for the sample
soft functions in Table 1, but here we only quote the measurement function for W -production at
large transverse momentum as an example,

F(a,b,y,θk,θl) = 1+ y−2
√

ay
(1+ab)(a+b)

(
bcosθk + cosθl

)
. (4.8)

In particular, we observe that
F(a,b,y,θk,θl)→ f (y,θ) (4.9)

in the soft limit kµ → 0, which corresponds to b→ 0 (and θl → θ ) in our parametrisation. The
same is true in the limit in which the two partons become collinear with a→ 1 and θk → θl = θ .

5
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These scaling rules in the soft and collinear limits are not accidental, but are a reflection of infrared-
collinear safety, and so they are universal properties of the NNLO measurement function.

As the pT -dependence is universal for the considered class of observables, we can perform
this integration explicitly. We further use the symmetries in n↔ n̄ and k↔ l to map the integra-
tion region in {a,b,y} onto the unit hypercube. This results in two contributions that involve the
measurement functions

F(a,b,y,θk,θl) , F(1/a,b,y,θk,θl) . (4.10)

Without going into further details here, we finally map the angular integrations onto the unit
hypercube with a suitable transformation, (θk,θl,θkl)→ (tk, tkl,xl). We are thus left with a six-
dimensional integral representation of the double real emission contribution. Similar to the NLO
formula (3.6), it contains an explicit singularity from pT → 0 and an implicit divergence for y→ 0.
In addition, we find an overlapping divergence in the limit a→ 1 and tkl→ 0 (which corresponds to
θkl → 0). The CFTFn f contribution thus starts with a 1/ε3 pole. The same strategy can be applied
for the CFCA colour structure, which turns out to contain an extra divergence in the limit b→ 0,
and therefore starts with a 1/ε4 contribution.

The integral representations that we have derived are amenable to the public program SecDec

[30 – 32]. Its general mode allows us to define the generic factors that contain all the implicit
divergences in the main template file on which the sector decomposition algorithm operates. The
observable-dependent measurement function, on the other hand, is kept symbolic during the sector
decomposition and subtraction steps, and its explicit form is resolved only at the final numerical
integration stage.

For the numerical integrations SecDec offers interfaces to the Cuba library [33] and Bases
[34]. We typically use Divonne and Cuhre as our default Cuba integrators, and use Bases for
independent cross-checks. Both Bases and the Cuba library return error estimates, which we do
not quote in the following, since we need to investigate further if they are trustworthy. For angular-
independent observables, the integrations run over four variables and SecDec produces results at
six digit precision in a few hours on a single machine. For angular-dependent observables, on the
other hand, the speed of convergence is significantly reduced and we typically obtain four digits
in a day (still on a single machine). Further improvements on the numerical side are desirable and
progress towards that goal will be reported in a future publication [35].

5. Renormalisation

The calculation we have outlined so far yields the bare soft function S0. In Laplace space the
soft function renormalises multiplicatively, S = ZSS0, and the renormalised soft function fulfils the
renormalisation group (RG) equation

d
dln µ

S(τ,µ) =−1
n

[
4Γcusp(αs) ln(µτ̄)−2γ

S(αs)

]
S(τ,µ) . (5.1)

Here Γcusp(αs) denotes the cusp anomalous dimension and γS(αs) is the soft anomalous dimen-
sion. We find it convenient to define the anomalous dimensions with a common prefactor (−1/n),

6
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where n reflects the scaling of the observable in the soft-collinear limit according to (3.5). Expand-
ing Γcusp(αs) = ∑

∞
n=0 Γn(

αs
4π
)n+1 and γS(αs) = ∑

∞
n=0 γS

n (
αs
4π
)n+1, the two-loop solution of the RG

equation takes the form

S(τ,µ) = 1+
(

αs

4π

){
−2Γ0

n
L2 +

2γS
0

n
L+ cS

1

}
+
(

αs

4π

)2
{

2Γ2
0

n2 L4−4Γ0

(
γS

0
n2 +

β0

3n

)
L3

−2
(

Γ1

n
−

(γS
0 )

2

n2 −
β0γS

0
n

+
Γ0cS

1
n

)
L2 +2

(
γS

1
n
+

γS
0 cS

1
n

+β0cS
1

)
L+ cS

2

}
(5.2)

with L = ln(µτ̄). The Z-factor ZS fulfils the same RG equation (5.1), and its explicit form is given
to two-loop order by

ZS = 1+
(

αs

4π

){
Γ0

n
1
ε2 +

2Γ0L− γS
0

n
1
ε

}
+
(

αs

4π

)2
{

Γ2
0

2n2
1
ε4 +Γ0

(
2Γ0

n2 L−
γS

0
n2 −

3β0

4n

)
1
ε3

+

(
2Γ2

0
n2 L2−Γ0

(2γS
0

n2 +
β0

n

)
L+

Γ1

4n
+

(γS
0 )

2

2n2 +
β0γS

0
2n

)
1
ε2 +

2Γ1L− γS
1

2n
1
ε

}
. (5.3)

The leading expansion coefficients of the cusp anomalous dimension are

Γ0 = 4CF , Γ1 = 4CF

{(
67
9
− π2

3

)
CA−

20
9

TFn f

}
. (5.4)

The cancellation of the divergences 1/ε j with j = 2,3,4 in the renormalised result provides a strong
check of our calculation. We can then extract the anomalous dimensions γS

0 and γS
1 from the 1/ε

pole terms, and the coefficients cS
1 and cS

2 of the renormalised soft function from the finite terms of
the two-loop calculation.

6. Results

We present results for all SCET-1 observables of Table 1, except for e+e− transverse thrust.
For these observables the NLO calculation as well as the NNLO mixed real-virtual correction are
trivial and can be performed analytically. As the respective measurement functions are consistent
with non-abelian exponentiation, the C2

F contribution is also known analytically.
We thus use SecDec to compute the CFCA and CFTFn f double real emission contributions.

We write the two-loop anomalous dimension and the finite term in the form

γ
S
1 = γ

CA
1 CFCA + γ

n f
1 CFTFn f ,

cS
2 = cCA

2 CFCA + cn f
2 CFTFn f +

1
2
(cS

1)
2 . (6.1)

Table 2 summarises our results for thrust, C-parameter, threshold Drell-Yan production and W -
production at large transverse momentum. Strictly speaking, the soft function for W -production at
large pT is not of the dijet-type considered here, but as argued in [9] the diagrams with attachments
to the third Wilson line are all scaleless and vanish up to NNLO. We can therefore consider this
function as an example with a non-trivial angular dependence.1

1In this case, the colour structure is also slightly different with CF →CF −CA/2 in the qq̄→ g and CF →CA/2 in
the qg→ q and gg→ g channels, see [9].

7
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Soft function γS
0/CF cS

1/CF γ
CA
1 γ

n f
1 cCA

2 cn f
2

Thrust [5, 6] 0 −π2 15.7945

(15.7945)

3.90981

(3.90981)

−56.4992

(−56.4990)

43.3902

(43.3905)

C-parameter [24] 0 −π2/3 15.7947

(15.7945)

3.90980

(3.90981)

−57.9754

(−)
43.8179

(−)

Threshold Drell-Yan [4] 0 π2/3 15.7946

(15.7945)

3.90982

(3.90981)

6.81281

(6.81287)

−10.6857

(−10.6857)

W@large pT [9] 0 π2 15.88

(15.7945)

3.905

(3.90981)

−2.78

(−2.65010)

−25.28

(−25.3073)

Table 2: Anomalous dimensions and finite terms of the renormalised soft function for sample SCET-1
observables. The upper numbers are the numerical results that we obtain with the SecDec implementation
of our algorithm, and the lower ones correspond to the known analytic expressions.

The first three entries in Table 2 correspond to angular-independent measurement functions.
For these observables we are left with four-dimensional numerical integrations that can be evaluated
very accurately as can be seen from the comparison with the known analytic results. The finite
term of the renormalised C-parameter soft functions has not been calculated so far, but a numerical
extraction from a comparison with the EVENT2 generator has been performed in [24]. The authors
find

cCA
2 =−58.16±0.26 , cn f

2 = 43.74±0.06 (C-parameter) (6.2)

which agrees well with our findings. Based on the numbers that we find for the thrust and threshold
Drell-Yan soft functions – which are of the same numerical complexity – we are, however, led to
expect that our numbers are significantly more accurate.

The measurement function for W -production at large transverse momentum has a non-trivial
angular dependence. In this case we therefore face six-dimensional integrations, and from Table
2 we see that we typically loose two digits of precision for those observables. The situation is
particularly bad for the coefficient cCA

2 , and the problem can be traced back to a large cancellation
between the double real emission and the mixed real-virtual contributions. For the finite term of
the double real emission term, we find 108.62, which is to be compared with the analytic result
108.75. The accuracy of our number for the double real emission contribution is thus similar to the
ones in the last line of Table 2, but due to the large cancellation our final result for cCA

2 is poor2.
We next consider the angularity soft function, which has only been computed to one-loop order

so far. In this case the anomalous dimension and the finite term are functions of the angularity A,
which interpolates between thrust (for A = 0) and total broadening (for A = 1). The one-loop

2In the meantime we significantly improved our numerical routines, and we now (Dec 2015) obtain cCA
2 =−2.65034

and cn f
2 =−25.3073 in a few hours on a single 8-core machine.

8
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Figure 1: Two-loop anomalous dimension and finite term of the renormalised angularity soft function. The
dashed line indicates the analytic thrust number, and the green (solid) line represents a fit to the data points.

ingredients are [22]

γ
S
0 (A) = 0 , cS

1(A) =−
π2

1−A
CF . (Angularities) (6.3)

We have evaluated the two-loop soft function with our numerical techniques for twenty values of
the angularity between A =−0.9 and A = 0.5. The results for the two-loop anomalous dimension
and the finite term of the renormalised soft function are displayed in Figure 1. The plot also shows
the analytic thrust results, which we reproduce for A = 0 accurately. We have further performed
four-dimensional fits to the data points that allow to extract the two-loop coefficients for inter-
mediate values of the angularity. Our calculation provides the last missing ingredient for NNLL
resummation of the angularity distributions.

7. Outlook

Our algorithm applies to dijet soft functions that are defined with a measurement function of
the form (3.5) at NLO and (4.7) at NNLO. We have shown that this encapsulates a large class of
soft functions, which have typically been calculated analytically on a case-by-case basis in the past.
In the future we plan to extend the range of observables in several respects:

• We assumed that the measurement function depends linearly on kT since the Laplace variable
τ has the dimension 1/mass. This can easily be generalised to arbitrary powers, which would
only modify the analytic part of the calculation.

9
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Figure 2: Two-loop finite term of the renormalised hemisphere soft function. The dashed line represents the
analytic result of [5].

• So far we only considered measurement functions that are consistent with non-abelian ex-
ponentiation, see (4.3). It should be possible to calculate the C2

F contribution with similar
techniques, which would make this limitation obsolete.

• For simplicity we focused on soft functions that depend on a single Laplace variable τ . Multi-
differential soft functions can also be accommodated in our approach, and as an example we
show the results for the two-loop finite term of the hemisphere soft function in Figure 2.
The result is shown as a function of the variable u = τL/(τL + τR), where τL and τR are the
respective Laplace variables.

• We saw in (3.6) that the rapidity integral diverges for n = 0. This corresponds to SCET-2
type observables, which need an additional regulator on top of DR. Our algorithm can easily
be adopted to include the rapidity regulator of [20], but the current version of SecDec is
designed for only one type of infrared regulator. The implementation of a second regulator
is in development, which will immediately allow calculations for SCET-2 observables.

• It is sometimes preferable to consider cumulant instead of Laplace (or Fourier) space soft
functions. In this case the exponential in the measurement function is replaced by a step
function, which again would only modify the analytic structure of our calculation. Alterna-
tively, one could bring the cumulant measurement function into an exponentiated form by
applying an additional Laplace transformation.

• There are other observables which do not fall into the class considered here. An example
is the jet broadening soft function, which depends on the total transverse momentum of the
soft radiation due to recoil effects. The broadening soft function is therefore conveniently
discussed in a combined Laplace-Fourier space, and the measurement function contains an
additional ε-dependent function from the (d− 2)-dimensional Fourier transformation [36].
As this function is independent of the singularity structure, it can be expanded in ε before
performing the phase-space integrations, and it should therefore not lead to additional com-
plications.
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