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1. Introduction

With the successful results delivered by Run |, it is neagsseachieve more accurate results
for measure quantities at the theoretical level. Then, deoto test phenomenological predictions
we make use of scattering amplitudes, which can be studittrims of their symmetries and ana-
lytic properties. Tree-level or Leading-Order (LO) conmgtigns provide a qualitative information,
affected by large uncertainties due to the poor convergehtiee coupling constant. Therefore, to
establish a proper comparison between theory and data;tbidading-Order (NLO) is needed.
As a main ingredient of the NLO contributions we consider-tmogp corrections, in which any
amplitude can be decomposed in a explicit set of Master tatedMI’s), where the coefficients
appearing in this combination are rational functions of khmeematic variables [1]. It is possible
to recover the structure of scattering amplitudes at iafelgvel by constructing the integrands
through the multi-particle pole expansion rising from timalicity properties and unitarity of the
S-matrix. In fact, scattering amplitudes analytically ttoned to complex momenta, reveal their
singularity structures in terms of poles and branch cutg dnitarity based method (UBM) allows
to determine the coefficients of the MI's by expanding thegnand of tree level cut amplitudes
into an expression that resembles the cut of the basis aitegr

In this talk, we review the four dimensional formulation (FDproposed in [2], in which
the Four-Dimensional-Helicity (FDH) scheme [3, 4, 5] isendled by considering ingredients in
four dimensions and providing explicit representationthefpolarisation and helicity states for the
four-dimensional particles propagating in the loop. FD§ Ibeen successfully applied to reproduce
one-loop corrections tgg — gg, g — 9g, gg — Hg (in the heavy top limit), as well agg — ggg
andgg — gggg[6].

In addition, we study the Colour-Kinematics (C/K) dual regentation of QCD amplitudes
by considering the kinematic part of the numerators, whicfound to obey Jacobi identities and
anti-symmetry relations similar to the ones holding for¢beresponding structure constants of the
Lie algebra [7, 8].

We report the results obtained in [9], where we consider ribe-level diagrams fogg — X, for
massless final state particles, wikh= ssqq,gg, in four- andd- dimensions. We work in axial
gauge, describing scalars in the adjoint representatidnfermions in the fundamental one. We
deal with the Jacobi relation of the kinematic numeratorspkgg the partons off-shell. Due to
the off-shellness of the external particles, the C/K-dyadi broken, and anomalous terms emerge.
This anomaly vanishes in the on-shell limit, as it shouldpxering the exact C/K-duality

2. Four-Dimensional-Formulation

In this section we briefly recall the main features of the FDIresne.

e We use barred notation for quantities referred to unobsgragticles, living in a-dimensional
space. Thus, the metric tensor

g =g +g", (2.1)
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can be decomposed in terms of a four-dimensional tegsamd a—2¢-dimensional one,
§. The tensorg andg project ad-dimensional vectoq into the four-dimensional and the
—2¢e-dimensional subspaces, respectively.

e d-dimensional momentéare decomposed as

(=040, FP=0P—p’=n? (2.2)

e The algebra of matriceg’ = ", y*,
[7,v°)=0, {#¥.vy =0, {7, #r=26". (23
is implemented through the substitutions
P -G8, M iuQt, P yTA (2.4)
together with the set of selection rules,2g)-SRs,

GABGBC _ GAC, GAA _ 07 GAB _ (_;BA7 rAGAB _ rB7
rAra=o, Qri=1, Q'G"B = Q" =1 (2.5)

which, ensuring the exclusion of the terms containing odaeye of ., completely defines
the FDF and allows the construction of integrands whichnuptegration, yield to the same
result as in the FDH scheme.

e The spinors of a@l-dimensional fermion fulfil the completeness relations
S U ()0 (0) = £ +ipy’+m, > a (O () = £ +ipy> —m, (2.6)
A=t A=t

which consistently reconstruct the numerator of the cupagator.

¢ In the axial gauge, the helicity sum ofdladimensional transverse polarisation vector can be
disentangled in

d-2 _ . _ MgV . Z“ZV
21 Si‘fm (6n) & (6.m) = (—g“”+ 2 )— (g““+ 2 ) , (2.7)

where the first term can be regarded as the cut propagator asive vector boson,

T 00— -g7+ o 2.9

2 )
A<To H

and the second term of the r.h.s. of Eq. (2.7) is related totimeerator of cut propagator of
the scalas® and can be expressed in terms of (h¢)-SRs as:

~UV E“ZV AB B
g +7 — GMB_QAQE. (2.9)
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Within FDF scheme, the QCD-dimensional Feynman rules in axial gauge have the follgwin
four-dimensional formulation:

ab aB
RTTETTTR :i67<—gaﬁ+k K ) (2.10a)

a,a b.p k2_u2+|0 uZ
k ; 52 AB B

;inﬁﬁl;:B‘ = m (G _QAQ ) 9 (Zlob)
k _ s KEHipyP+m

R i & P20’ (2.10c)

3. One-loop amplitudes

In this section we present preliminary results obtainedupgh FDF for the leading colour-
ordered one-loop helicity amplitudes; (17,2%,3",47 H) and Ag (17,27,37,47,57 H) in the
heavy top mass limit.

Besides providing the analytic values of coefficients ofheamaster integral, we give necessary
ingredients to carry out this computation.

In order to apply generalised-unitarity methods within FI¥E consider as examples the one-
loop 2— 2,3,4 scattering amplitudes, where external particles canthergjluons, quarks or the
Higgs boson.

In general, due to the decomposition formulae any masslgssnt one-loop amplitude can
be decomposed in terms Mis, as follows

AP = @z e {Cunku;o'ijkl +Gij;o lij i+ Gz i i
+ Cifjjigteabif i [4%] = G2 Vi e (%] + Gij a2 Dijpa (2] - (3.1)

In Eg. (3.1), we see the first line corresponds to the cuttcoctible, while the second one
to the rational part. Once again, we emphasise FDF givesuthedntribution to the one-loop
amplitude, being no need of distinguishing those two pieces

The coefficientg’s entering in the decompositions (3.1) can be obtained guke gener-
alised unitarity techniques for quadruple [10, 11], trid&, 13, 11], and double [14, 15, 16] cuts.
Since internal particles are massless, the single-cuhigabs [17, 18, 19] are not needed for this
computation. In general, the c@t,...;, defined by the conditiond;, = --- = D;, = 0, allows for
the determination of the coefficients...i,. .
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3.1 ThegggggH amplitude

We show the explicit structure of the analytic contributiohthe one-loop Higgs plus five
gluon all-plus amplitude. For sake of simplicity, we do naitevthe coefficients of the finite part
of the amplitude.

The leading-order contribution of the six-point can be teritas,
ALS (17 2 3% 47 5t H) = —imj . (3.2)
T (112)(2[3)(3]4)(4[5) (5]1)

The one-loop correction to this amplitude is obtained bysaering the independent topologies

T

T o r o
BN IE

= o &
TR o A

Figure 1. Independent box-, triangle- and bubble- integral topaegifor the amplitude
AL'°°P(H,1,2,3,4,5)

depicted in fig. 1 and takes the form,
_ 1 1
Ay oo (H,17,27,37,4%,5%) ZEAteree (S123451235— S123MG ) 1123451 [1] — EAgeeSG4S45|H12\3|4\5 1]
1 1

- EAgee(5234%45— S3452345) IH1j2)345 + EAE{ee (s123a— M8 l12345m [1]
+ Croganisli23ams[M ] + Cuizaaslizgas Y]
2] %]+ Cu123aslH12345 1]
?]

+ C12345H 112345/H [17] + C1234H 5] 1234H|5[H

u
%]+ Crogapsh 123451 [U°] + C1o34m 51 12341 5[

?)

+ Cr12345!H12345[1
2 2
] + CH1j2345 H1[2345 U]

+ C12j345 1123451 [U7] + C123451 1123451 [

-+ cyclic perm, (3.4)

beingc’'s non-vanishing coefficients.

A similar study was carried out for the analytic expressibthe one-loop Higgs plus four gluon

amplitudes , wherein the helicity configuratiohs(H,1",2" 3" . 4"), As(H,17,27,3",4%),As(H,17,27,3",4")
andAs (H,17,2",37,4") have been considered, finding agreement with [20, 21]

The procedure for computing the one-loop amplitudes gilmve has been fully automated.
In particular, we have implemented the FDF Feynman ruledu@ing the(—2¢)-SRs) in FEY-
NARTYFEYNCALC [22], in order to automatically build the tree-level ampdies to be sewn in
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the cuts. Then, the coefficients of the master integrals atermhined by applying integrand re-
duction via Laurent expansion [23], which has been implaetkin Mathematica, by using the
package S@M [24].

4. Colour-Kinematics-duality

In this section we briefly describe the diagrammatic studygive to the C/K-duality we
presented in [9], where off-shell tree-level currents anbedded in higher-multiplicity/multi-loop
amplitudes. This investigation is carried out by consiugithe tree-level diagrams for the process
gg — X, for massless final states, wikh= ss qq, gg, in four dimensions. The same analysis, first
made ind-dimensions, has then been extended to dimensionallyaeglubmplitudes, taking the
FDF as a regularisation scheme. The calculation has beéorped in axial gauge, describing
scalars in the adjoint representation and fermions in thddmental one.

4.1 Colour-kinematics duality for gluons
1 2 1 2 1 2 1 2

Figure 2: Jacobi combination for gluons.

We consider the tree-level scatterirggg — gg, which receives contributions from four Feynman
diagrams, however, because of colour algebra, the cotibib@rom the 4-gluon vertex can be
absorbed in the,t andu channels, so that the amplitude is exposed in terms of thageaons. The
corresponding numerators, say, n, andng, can be combined in Jacobi-like fashion as shown in
Fig. 2,

Ng = —ni+n2+ng, 4.2)
The numerator of the gluon propagator in axial gauge hasottme f
MY (p,q) = Migy+May (P, 0), (4.2)

wherellg,, corresponds to the numerator of the propagator in Feynmagegand ), (p, q) labels

the term depending on an arbitrary light-like reference raommag*,

. . pHgY +gHpY
Meey=—ig"", My (po) =i >~ LE qq_s &

The explicit form of (4.1) is given by the contraction of affi-efell current with gluon polarisations
as,

(4.3)

(Ng) gy ap = (J8Edy + 9™ €0 (P1, ) €41, (P2, ) €ty (P3,C3) g (P2, ), (44)

whereJ_f_lF‘g‘yis the sum of the Feynman gauge-like terms of the three nuorsra

—i 3 ey (P1, P2, P3, Pa) =PL[GHH (P1+ 2pa)H? — gH2H* (p1+ 2pa)*® + gH2H (1 + 2pa) "]
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+ cyclic perm. (4.5)

and

1
_ 'JU1H2H3I14 _
g ax  (P1, P2, P3, Pa) a-(pr1p2) {
(P4 p% — ph2ph™ — (pf — p3) 0"#2) [a- (pa — Pa) §*H — (P3+ 2pa)*® g + (pa + 2ps) o]
+ (P Ps — PPl — (P5— p3) 9"°H) [a- (p1— P2) §"F2 + (p1+ 2p2)H g2 — (pp + 2y ) M2 q’“]}
—[(1234) — (4123] — [(1234) — (4231)]. (4.6)

is the contribution depending on the reference momentum.

Figure 3: Off-shell colour-kinematics duality for gluons. The Jacobmbination of tree-level numerators
(I.h.s) is expressed in terms of subdiagrams only (r.h.s.).

With the expressions of the off-shell currents of eqs. #6,we embed the Jacobi-like com-
bination of tree-level numerators into a generic diagrarens in the most general case the legs
p1, P2, p3 andps become internal lines and polarisations associated toahEles are replaced by
the numerator of their propagators. Accordingly, Eq. (4dneralises to the following contraction,

Ng == (Ng)al_“a‘lxalmaél. (47)
between the tensdNg)q,...q,, defined as,

(Ng)alwaél - (ng;-llié54 + ‘]g‘]l-lA;(M) nﬂlal( P1, ql) nﬁlzaz( p2, q2) nﬂsas( p3, CI3) nﬂwa( P4, CI4) ) (4-8)

and the arbitrary tensot?:-%, standing for the residual kinematic dependence of theralnasg,
associated to either higher-point tree-level or to multid topologies.

Using momentum conservation, we find that the r.h.s. of (daB) be cast in the following
suggestive form,

(Ng) Qay...0q = Zl piZ(Alg)GLn(M + ) Z p|2 pjz(Cé]J )01...047 (4-9)

i,J=1
i7]

whereA{J andCigj are tensors depending both on the momgmntaf gluons, eventually depending
on the loop variables, and on the reference momgndéeach gluon propagators.
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Remarkably, Eq.(4.9) shows the full decomposition of a domiiions of generic numerators
built from the Jacobi relation in terms of squared moment#hefparticles entering the Jacobi
identity defined in Fig. 2. In particular, this result imdithat the C/K duality is certainly satisfied
when imposing the on-shell cut-conditiopg = 0. A diagrammatic representation of the conse-
guences of the decompoasition (4.9) in (4.7) is given in Fjgvi3ere each term in the r.h.s. contains
an effective vertex, associated with the C/K violating tewhich we have fully identified. Similar
results have been obtained &sandqq in the final states.

4.2 Colour-kinematics duality in d-dimensions

In this Section we study the C/K-duality for tree-level aiyales in dimensional regularisation
by employing the FDF scheme, recently introduced in [2].
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Figure4: Jacobi combinations for FDF particles.

The relations depicted in Fig. 4 are the basic building kdoick the determination of higher-
order scattering amplitudes within generalised unitdbiged methods. The particles with dots
represents the generalised (or dimensional regulatedtlpar while all other lines identify parti-
cles living in 4-dimensions.

A diagrammatic analysis, similar to the one done in sectidnwhs carried out in [9], where the
C/K duality is shown to be obeyed by the numerators of treetlamplitudes within the FDF
scheme, which involve non-trivial relations involving hanhassless and massive particles. The
C/K-duality is recovered once transversality conditiofiggeneralised) gluon polarisations and
Dirac equation are taken into account. More specificallpegalised gluons of momentumobey

& -p=0(A =0,%), while for generalised quarks one hd)(p—iuys) =0and(p—iuys)v(p) =

0.

As a non-trivial example we provide explicit expressions @K dual building block for
the procesg°g®(s°s’) — qqg, where initial states of gluons are treatdlimensional particles,
whereas the final state remains fully four-dimensional.
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5. Conclusions

At one-loop level, we have made use of the unitarity methaus thae Four-Dimensional-
Formulation scheme to compute the analytical expressanggf— ggH andgg — gggH.

Possible applications and extensions of this study are dhgpatation of the full analytical
expression for Higgs- 3 jets in the final state, and as well as the two-loop impleatent of the
Four-Dimensional-Formulation scheme.

On the the Colour-Kinematics side we have explicitly showat tany higher-point/loop di-
agram obtained from the Jacobi identity between kinematigserators of off-shell diagrams
-constructed with Feynman rules in axial gauge- can be dposead in terms of sub-diagrams
where one or two internal propagators are pinched. As comesmg of this decomposition, we
diagrammatically that proved the colour-kinematics dyab satisfied at multi-loop only by im-
posing on-shellness of the four particles entering in tleeliacombination. This behaviour holds
for d-dimensional regulated amplitudes.
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