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1. Introduction

With the successful results delivered by Run I, it is necessary to achieve more accurate results
for measure quantities at the theoretical level. Then, in order to test phenomenological predictions
we make use of scattering amplitudes, which can be studied interms of their symmetries and ana-
lytic properties. Tree-level or Leading-Order (LO) computations provide a qualitative information,
affected by large uncertainties due to the poor convergenceof the coupling constant. Therefore, to
establish a proper comparison between theory and data, Next-to-Leading-Order (NLO) is needed.
As a main ingredient of the NLO contributions we consider one-loop corrections, in which any
amplitude can be decomposed in a explicit set of Master Integrals (MI’s), where the coefficients
appearing in this combination are rational functions of thekinematic variables [1]. It is possible
to recover the structure of scattering amplitudes at integral level by constructing the integrands
through the multi-particle pole expansion rising from the analiticity properties and unitarity of the
S-matrix. In fact, scattering amplitudes analytically continued to complex momenta, reveal their
singularity structures in terms of poles and branch cuts. The unitarity based method (UBM) allows
to determine the coefficients of the MI’s by expanding the integrand of tree level cut amplitudes
into an expression that resembles the cut of the basis integrals.

In this talk, we review the four dimensional formulation (FDF) proposed in [2], in which
the Four-Dimensional-Helicity (FDH) scheme [3, 4, 5] is extended by considering ingredients in
four dimensions and providing explicit representations ofthe polarisation and helicity states for the
four-dimensional particles propagating in the loop. FDF has been successfully applied to reproduce
one-loop corrections togg→ gg, qq̄→ gg, gg→ Hg (in the heavy top limit), as well asgg→ ggg
andgg→ gggg[6].

In addition, we study the Colour-Kinematics (C/K) dual representation of QCD amplitudes
by considering the kinematic part of the numerators, which is found to obey Jacobi identities and
anti-symmetry relations similar to the ones holding for thecorresponding structure constants of the
Lie algebra [7, 8].

We report the results obtained in [9], where we consider the tree-level diagrams forgg→ X, for
massless final state particles, withX = ss,qq̄,gg, in four- andd- dimensions. We work in axial
gauge, describing scalars in the adjoint representation and fermions in the fundamental one. We
deal with the Jacobi relation of the kinematic numerators keeping the partons off-shell. Due to
the off-shellness of the external particles, the C/K-duality is broken, and anomalous terms emerge.
This anomaly vanishes in the on-shell limit, as it should, recovering the exact C/K-duality

2. Four-Dimensional-Formulation

In this section we briefly recall the main features of the FDF scheme.

• We use barred notation for quantities referred to unobserved particles, living in ad-dimensional
space. Thus, the metric tensor

ḡµν = gµν + g̃µν , (2.1)
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can be decomposed in terms of a four-dimensional tensorg and a−2ε-dimensional one,
g̃. The tensorsg and g̃ project ad-dimensional vector ¯q into the four-dimensional and the
−2ε-dimensional subspaces, respectively.

• d-dimensional momentāℓ are decomposed as

ℓ̄= ℓ+ ℓ̃ , ℓ̄2 = ℓ2−µ2 = m2 (2.2)

• The algebra of matrices̃γµ = g̃µ
ν γ̄ν ,

[γ̃α ,γ5] = 0, {γ̃α ,γµ}= 0 , {γ̃α , γ̃β}= 2g̃αβ . (2.3)

is implemented through the substitutions

g̃αβ → GAB, ℓ̃α → i µ QA , γ̃α → γ5ΓA . (2.4)

together with the set of selection rules, (−2ε)-SRs,

GABGBC = GAC, GAA = 0, GAB = GBA, ΓAGAB = ΓB,

ΓAΓA = 0, QAΓA = 1, QAGAB = QB, QAQA = 1. (2.5)

which, ensuring the exclusion of the terms containing odd powers ofµ , completely defines
the FDF and allows the construction of integrands which, upon integration, yield to the same
result as in the FDH scheme.

• The spinors of ad-dimensional fermion fulfil the completeness relations

∑
λ=±

uλ (ℓ) ūλ (ℓ) = /ℓ+ iµγ5+m, ∑
λ=±

vλ (ℓ) v̄λ (ℓ) = /ℓ+ iµγ5−m, (2.6)

which consistently reconstruct the numerator of the cut propagator.

• In the axial gauge, the helicity sum of ad-dimensional transverse polarisation vector can be
disentangled in

d−2

∑
i=1

εµ
i (d)

(

ℓ̄, η̄
)

ε∗ν
i (d)

(

ℓ̄, η̄
)

=

(

−gµν +
ℓµℓν

µ2

)

−

(

g̃µν +
ℓ̃µ ℓ̃ν

µ2

)

, (2.7)

where the first term can be regarded as the cut propagator of a massive vector boson,

∑
λ=±,0

εµ
λ (ℓ)ε∗ν

λ (ℓ) =−gµν +
ℓµℓν

µ2 , (2.8)

and the second term of the r.h.s. of Eq. (2.7) is related to thenumerator of cut propagator of
the scalars• and can be expressed in terms of the(−2ε)-SRs as:

g̃µν +
ℓ̃µ ℓ̃ν

µ2 → GAB−QAQB . (2.9)
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Within FDF scheme, the QCDd-dimensional Feynman rules in axial gauge have the following
four-dimensional formulation:

a,α b,β

k
= i

δab

k2−µ2+ i0

(

−gαβ +
kα kβ

µ2

)

, (2.10a)

a,A b,B

k
= i

δab

k2−µ2+ i0

(

GAB−QAQB) , (2.10b)

i j

k
= i δ i j /k+ iµγ5+m

k2−m2−µ2+ i0
, (2.10c)

3. One-loop amplitudes

In this section we present preliminary results obtained through FDF for the leading colour-
ordered one-loop helicity amplitudesA5(1+,2+,3+,4+,H) and A6(1+,2+,3+,4+,5+,H) in the
heavy top mass limit.
Besides providing the analytic values of coefficients of each master integral, we give necessary
ingredients to carry out this computation.

In order to apply generalised-unitarity methods within FDF, we consider as examples the one-
loop 2→ 2,3,4 scattering amplitudes, where external particles can be either gluons, quarks or the
Higgs boson.

In general, due to the decomposition formulae any masslessn-point one-loop amplitude can
be decomposed in terms MIs, as follows

A1-loop
n =

1
(4π)2−ε

n−1

∑
i< j<k<l

[

ci| j|k|l ;0 Ii| j|k|l +ci j |k|l ;0 Ii j |k|l +ci j |kl;0 Ii j |kl

+ci| j|k|l ;4 Ii| j|k|l [µ4]+ci j |k|l ;2 Ii j |k|l [µ2]+ci j |kl;2 Ii j |kl [µ2]

]

. (3.1)

In Eq. (3.1), we see the first line corresponds to the cut-constructible, while the second one
to the rational part. Once again, we emphasise FDF gives the full contribution to the one-loop
amplitude, being no need of distinguishing those two pieces.

The coefficientsc’s entering in the decompositions (3.1) can be obtained by using the gener-
alised unitarity techniques for quadruple [10, 11], triple[12, 13, 11], and double [14, 15, 16] cuts.
Since internal particles are massless, the single-cut techniques [17, 18, 19] are not needed for this
computation. In general, the cutCi1···ik, defined by the conditionsDi1 = · · · = Dik = 0, allows for
the determination of the coefficientsci1···ik;n.
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3.1 The gggggH amplitude

We show the explicit structure of the analytic contributionof the one-loop Higgs plus five
gluon all-plus amplitude. For sake of simplicity, we do not write the coefficients of the finite part
of the amplitude.
The leading-order contribution of the six-point can be written as,

Atree
6,H

(

1+,2+,3+,4+,5+,H
)

=
−im4

H

〈1|2〉〈2|3〉〈3|4〉〈4|5〉〈5|1〉
. (3.2)

The one-loop correction to this amplitude is obtained by considering the independent topologies
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Figure 1: Independent box-, triangle- and bubble- integral topologies for the amplitude
A1−loop

6 (H,1,2,3,4,5)

depicted in fig. 1 and takes the form,

A1−loop
6

(

H,1+,2+,3+,4+,5+
)

=
1
2

Atree
6

(

s1234s1235−s123m
2
H

)

I123|4|5|H [1]−
1
2

Atree
6 s34s45IH12|3|4|5 [1]

−
1
2

Atree
6 (s234s345−s34s2345) IH1|2|34|5+

1
2

Atree
6

(

s1234−m2
H

)

I1234|5|H [1]

+c123|4|H|5I123|4|H|5[µ4]+cH12|3|4|5IH12|3|4|5[µ4]

+c1234|5|H I1234|5|H [µ2]+c1234|H|5I1234|H|5[µ2]+cH123|4|5IH123|4|5[µ2]

+cH12|34|5IH12|34|5[µ2]+c123|4|5H I123|4|5H [µ2]+c123|4H|5I123|4H|5[µ2]

+c12|345H I12|345H [µ2]+c123|45H I123|45H [µ2]+cH1|2345IH1|2345[µ2]

+cyclic perm, (3.4)

beingc’s non-vanishing coefficients.
A similar study was carried out for the analytic expression of the one-loop Higgs plus four gluon
amplitudes , wherein the helicity configurationsA5(H,1+,2+,3+,4+), A5(H,1−,2+,3+,4+), A5(H,1−,2−,3+,4+)
andA5(H,1−,2+,3−,4+) have been considered, finding agreement with [20, 21]

The procedure for computing the one-loop amplitudes given above has been fully automated.
In particular, we have implemented the FDF Feynman rules (including the(−2ε)-SRs) in FEY-
NARTS/FEYNCALC [22], in order to automatically build the tree-level amplitudes to be sewn in

5
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the cuts. Then, the coefficients of the master integrals are determined by applying integrand re-
duction via Laurent expansion [23], which has been implemented in Mathematica, by using the
package S@M [24].

4. Colour-Kinematics-duality

In this section we briefly describe the diagrammatic study wegive to the C/K-duality we
presented in [9], where off-shell tree-level currents are embedded in higher-multiplicity/multi-loop
amplitudes. This investigation is carried out by considering the tree-level diagrams for the process
gg→ X, for massless final states, withX = ss,qq̄,gg, in four dimensions. The same analysis, first
made ind-dimensions, has then been extended to dimensionally regulated amplitudes, taking the
FDF as a regularisation scheme. The calculation has been performed in axial gauge, describing
scalars in the adjoint representation and fermions in the fundamental one.

4.1 Colour-kinematics duality for gluons

✹
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✸
❏ ❂ �

♥✁
✹

✶ ✷

✸
✰

♥✂
✹
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✸
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✹

✶ ✷

✸

Figure 2: Jacobi combination for gluons.

We consider the tree-level scattering,gg→ gg, which receives contributions from four Feynman
diagrams, however, because of colour algebra, the contribution from the 4-gluon vertex can be
absorbed in thes, t andu channels, so that the amplitude is exposed in terms of three diagrams. The
corresponding numerators, sayn1, n2 andn3, can be combined in Jacobi-like fashion as shown in
Fig. 2,

Ng =−n1+n2+n3, (4.1)

The numerator of the gluon propagator in axial gauge has the form

Πµν(p,q) = Πµν
Fey+Πµν

Ax (p,q), (4.2)

whereΠµν
Fey corresponds to the numerator of the propagator in Feynman gauge andΠµν

Ax (p,q) labels
the term depending on an arbitrary light-like reference momentumqµ ,

Πµν
Fey=−igµν , Πµν

Ax (p,q) = i
pµqν +qµ pν

q· p
. (4.3)

The explicit form of (4.1) is given by the contraction of an off-shell current with gluon polarisations
as,

(

Ng
)

α1...α4
=

(

Jµ1..µ4
g-Fey +Jµ1...µ4

g-Ax

)

εµ1 (p1,q1)εµ2 (p2,q2)εµ3 (p3,q3)εµ4 (p4,q4) , (4.4)

whereJµ1µ4
s-Fey is the sum of the Feynman gauge-like terms of the three numerators,

−iJµ1µ2µ3µ4
g-Fey (p1, p2, p3, p4) =pµ1

1 [gµ3µ4 (p1+2p4)
µ2 −gµ2µ4 (p1+2p4)

µ3 +gµ2µ3 (p1+2p3)
µ4]

6
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+cyclic perm. (4.5)

and

− iJµ1µ2µ3µ4
g-Ax (p1, p2, p3, p4) =

1
q· (p1+ p2)

{

(

pµ1
1 pµ2

1 − pµ2
2 pµ1

2 −
(

p2
1− p2

2

)

gµ1µ2
)

[q· (p4− p3)gµ3µ4 − (p3+2p4)
µ3 qµ4 +(p4+2p3)

µ4 qµ3]

+
(

pµ3
3 pµ4

3 − pµ3
4 pµ4

4 −
(

p2
3− p2

4

)

gµ3µ4
)

[q· (p1− p2)gµ1µ2 +(p1+2p2)
µ1 qµ2 − (p2+2p1)

µ2 qµ1]

}

− [(1234)→ (4123)]− [(1234) → (4231)]. (4.6)

is the contribution depending on the reference momentum.

J = A1
g + A2

g + A3
g + A4

g + C12
g

+ C13
g + C14

g + C23
g + C24

g + C34
g

Figure 3: Off-shell colour-kinematics duality for gluons. The Jacobi combination of tree-level numerators
(l.h.s) is expressed in terms of subdiagrams only (r.h.s.).

With the expressions of the off-shell currents of eqs. (4.5,4.6) we embed the Jacobi-like com-
bination of tree-level numerators into a generic diagram, where in the most general case the legs
p1, p2, p3 andp4 become internal lines and polarisations associated to the particles are replaced by
the numerator of their propagators. Accordingly, Eq. (4.1)generalises to the following contraction,

Ng = (Ng)α1...α4X
α1...α4. (4.7)

between the tensor(Ng)α1...α4, defined as,

(Ng)α1...α4 =−
(

Jµ1...µ4
g-Fey +Jµ1...µ4

g-Ax

)

Πµ1α1(p1,q1)Πµ2α2(p2,q2)Πµ3α3(p3,q3)Πµ4α4(p4,q4) , (4.8)

and the arbitrary tensorXα1...α4, standing for the residual kinematic dependence of the diagrams,
associated to either higher-point tree-level or to multi-loop topologies.

Using momentum conservation, we find that the r.h.s. of (4.8)can be cast in the following
suggestive form,

(

Ng
)

α1...α4
=

4

∑
i=1

p2
i (A

i
g)α1...α4 +

4

∑
i, j=1
i 6= j

p2
i p2

j (C
i j
g )α1...α4, (4.9)

whereAi
g andCi j

g are tensors depending both on the momentapi of gluons, eventually depending
on the loop variables, and on the reference momentaqi of each gluon propagators.

7
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Remarkably, Eq.(4.9) shows the full decomposition of a combinations of generic numerators
built from the Jacobi relation in terms of squared momenta ofthe particles entering the Jacobi
identity defined in Fig. 2. In particular, this result implies that the C/K duality is certainly satisfied
when imposing the on-shell cut-conditionsp2

i = 0. A diagrammatic representation of the conse-
quences of the decomposition (4.9) in (4.7) is given in Fig. 3, where each term in the r.h.s. contains
an effective vertex, associated with the C/K violating term, which we have fully identified. Similar
results have been obtained forssandqq̄ in the final states.

4.2 Colour-kinematics duality in d-dimensions

In this Section we study the C/K-duality for tree-level amplitudes in dimensional regularisation
by employing the FDF scheme, recently introduced in [2].
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Figure 4: Jacobi combinations for FDF particles.

The relations depicted in Fig. 4 are the basic building blocks for the determination of higher-
order scattering amplitudes within generalised unitaritybased methods. The particles with dots
represents the generalised (or dimensional regulated) particles, while all other lines identify parti-
cles living in 4-dimensions.
A diagrammatic analysis, similar to the one done in section 4.1 was carried out in [9], where the
C/K duality is shown to be obeyed by the numerators of tree-level amplitudes within the FDF
scheme, which involve non-trivial relations involving both massless and massive particles. The
C/K-duality is recovered once transversality conditions of (generalised) gluon polarisations and
Dirac equation are taken into account. More specifically, generalised gluons of momentump obey
ελ ·p= 0(λ = 0,±), while for generalised quarks one has ¯u(p)(/p− iµγ5) = 0 and(/p− iµγ5)v(p) =
0.

As a non-trivial example we provide explicit expressions for C/K dual building block for
the processg•g•(s•s•) → qq̄g, where initial states of gluons are treatedd-dimensional particles,
whereas the final state remains fully four-dimensional.
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5. Conclusions

At one-loop level, we have made use of the unitarity methods and the Four-Dimensional-
Formulation scheme to compute the analytical expressions for gg→ ggH andgg→ gggH.

Possible applications and extensions of this study are the computation of the full analytical
expression for Higgs+3 jets in the final state, and as well as the two-loop implementation of the
Four-Dimensional-Formulation scheme.

On the the Colour-Kinematics side we have explicitly shown that any higher-point/loop di-
agram obtained from the Jacobi identity between kinematicsnumerators of off-shell diagrams
-constructed with Feynman rules in axial gauge- can be decomposed in terms of sub-diagrams
where one or two internal propagators are pinched. As consequence of this decomposition, we
diagrammatically that proved the colour-kinematics duality is satisfied at multi-loop only by im-
posing on-shellness of the four particles entering in the Jacobi combination. This behaviour holds
for d-dimensional regulated amplitudes.
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