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1. Introduction

The computation of perturbative corrections is of vital importance to understand and explore
the quantum nature of Nature. This holds for practical and theoretical as well as phenomenological
and formal points of view. From a practical and phenomenological perspective, it is important
to understand the structure of infrared (IR) divergences in intermediate results such as scattering
amplitudes when computing corrections to Large Hadron Collider (LHC) observables. From a
more formal theoretical perspective, one would like to obtain an understanding beyond perturbation
theory. Consistency with known perturbative results in the latter focus are vital. In this proceedings
contribution, we report on progress towards computing a quantity which appears in both of these
developments: the lightlike cups anomalous dimension.

The cusp anomalous dimension is a universal function which governs (leading) IR divergences
in quantum field theory. It is a function of only the constants (coupling constants and group theory
factors) in the theory: it has no kinematic dependence. Hence it is an ideal target for computation
and analysis and a valuable testing ground for new computational technology. It has been calculated
in Quantum Chromodynamics (QCD) to three-loop order [1] (see also [2]), and in the planar sector
of ./ = 4 supersymmetric Yang-Mills (SYM) theory in principle to any loop order [3]. In the latter
case the developments are driven by a cluster of ideas known as the AdS/CFT correspondence [4].
which is by far best understood in its planar limit. Both of these developments meet at four loops,
where the first non-planar correction to the cusp anomalous dimension occurs. In fact, a conjecture
exists [5] that this non-planar correction vanishes, see also [6, 7]. The drive of the present work is
to compute this quantity from perhaps the simplest observable that contains it: the Sudakov form
factor with two on-shell legs in .4/" =4 SYM .

Modern cutting-edge computation proceeds in several distinct phases. The first stage is inte-
grand generation. This could be done by Feynman graph perturbation theory, but typically, even if
the resulting expressions are manageable by computer algebra, the result is not in its simplest possi-
ble form. Especially for highly supersymmetric theories this is a problem as no off-shell, manifestly
supersymmetric and Lorenz-invariant formulations of them exists. Instead, we have generated the
integrand of the two-point four-loop form factor in previous work [8] using color-kinematic duality
[9, 10, 11] as an ansatz generator, up to a single remaining parameter which escaped all unitarity
cuts used in that publication to pin down coefficients. Such obtained integrand takes a compact
form and has only up to quadratic numerators. Typically, the generated integrand is expressed in
terms of integrals for which modern integration methods are hard to apply directly. Moreover,
there are typically very many integrals appearing. Therefore, this necessarily requires the second
stage, where the integrand is reduced to a basis of master integrals by solving integration-by-parts
(IBP) identities. Finally, in the third stage, the master integrals are integrated and the pieces are
assembled into the full result.

In this proceedings contribution, we report on the IBP reduction of the four-loop form factor
in 4" =4 SYM as well as on the basis of master integrals for this form factor in generic quantum
field theories, such as QCD. This extends work at two [12] and three loops [13]. For this, we used
two different approaches. One is to solve the set of IBP relations for the .#" =4 SYM form factor
explicitly through massive computer algebra. The other is to count the number of master integrals
using techniques from computational algebraic geometry. The work reported in this talk has been
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published in [14], to which the reader is also referred for more fine details of our results.

2. IBP reduction

An L-loop Feynman integral with n “indices” ay,...,a, is an integral of the form

I(ay,...,a,) E/lel...leL(l/Dl)””...(l/Dn)“", 2.1)

where D; are inverse propagators. Integrals with the same positive indices are said to belong to the
same sector. A fundamental property of Feynman integrals is that they obey IBP identities,

/ dPly ... leLai“ (integrand) = 0. (2.2)
1

By computing the derivative of the integrand, this equation translates into a relation between Feyn-
man integrals with different indices. One can express integrals for a given integral topology in terms
of the above set of Feynman integrals by constructing a complete set of propagators (quadratic ex-
pressions in momenta). Completeness means that any inner product of the momenta involved can
be expressed as a linear combination of the chosen complete set of propagators. Once such a com-
plete set is chosen, the IBP relations are a large set of linear relations on what amount to vectors
given by ordered vectors of (in our case) integers, with rational coefficients.

The IBP relations allow one to reduce the set of integrals obtained by integrand generation to
a simpler set, known as the ‘master’ integrals [15, 16]. A key step of this so-called Laporta [17]
algorithm is to define a ranking of integrals by assigning them a score. Then the linear relations
may be solved by, basically, Gaussian elimination, such that complicated integrals are expressed
in terms of simpler ones. Various public and private implementations of Laporta’s algorithm exist,
such as AIR [18], FIRE [19, 20, 21] and Reduze [22, 23]. See also LiteRed [24, 25] for an
alternative approach to IBP reduction. We explored F IRE, Reduze and LiteRed in some detail
for the four-loop form factor problem. Only Reduze was able to solve for all integral topologies
needed in this problem, after resolving a disk access pile-up issue in the currently public version of
this code.

For the four-loop integrals under study, there are twelve propagators fixed by integral topology;
six additional propagators must be added in order to find a complete set. One important technical
result of our work [14] is that the choice of the set of additional propagators can influence the
performance of the IBP reduction algorithms dramatically. For instance, if the integral topology
under study has graph symmetry, then an additional set of six propagators may be chosen such
that the set reflects this symmetry manifestly. This allows for automatic simplifications during the
reduction phase when using Reduze. Typically, however, this leads to complicated expressions
for these additional propagators. Alternatively, one can try to find a set of simple propagators,
sacrificing manifest graph symmetry. These two choices behave differently under IBP reduction:
while Reduze could solve the simple set of IBP relations, it got stuck in solving the symmetric
set. The bottleneck is the size of messages being passed through the message-passing-interface
protocol. A prominent example where this occurs is integral topology 26 from [8].
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2.1 Results

We have obtained an explicit IBP reduction of all integrals appearing in the four-loop Sudakov
form factor in [8]. The original integrals have up to quadratic numerators. After reduction, only one
twelve-propagator, quadratic-numerator integral is left in topology 26.! Single numerator integrals
are more common, also with the full twelve propagators, see Table 1. Although simpler, the basis
of master integrals still contains integrals of considerable complexity.

Table 1: Master integral statistics of obtained IBP reduction. s represents the power of numerators.

(a) planar form factor (b) non-planar form factor
#props | s=0 s=1 s=2 #props | s=0 s=1 s=2
12 8 6 0 12 10 10 1
11 18 2 0 11 13 3 0
10 43 9 0 10 34 10 0
9 49 1 0 9 29 1 0
8 51 4 1 8 32 3 1
7 25 0 0 7 13 0 0
6 8 0 0 6 7 0 0
5 0 0 0 5 1 0 0
sum 203 22 1 sum 139 27 2

A preliminary examination using mainly FIESTA [26, 27, 28] based on sector decomposition
[29] as well as automated Mellin-Barnes integrals [30, 31] was able to compute almost all master
integrals for the planar form factor—with the exception of three. These are integrals of topology
25 with a linear numerator and without a linear numerator as well as the scalar integral of topology
30 without numerator. The integrand for topology 30 reads

1521521;2152(—15 —l—p1)72(—l4 + 15)72(—16 +p2)72(l3 — 14)72(—14 +1Is+ 16)72
X (=l+pi+p2) H(—B+L—Ils+p) 2 (~L+1l—Is—lg+pi +p2) % (23)

while that for topology 25 reads

g 21521712 (= 1) 2 (Is +16) 7 (—ls + p2) 2 (—la+p1) =L+ pi+p2) 7
X (—la—=Is+p) (—B+l+ls+p) (—h+l—ls+p2) . (24)

Note that linear numerators inherently include a choice: different numerators may be related to the
same master integral using the IBP reduction.

We would like to mention that there are interesting cancellations after the IBP reduction. In
particular, the remaining free parameter in the previously obtained integrand drops out of the re-
duced results, which shows that it is a truly free parameter.

I'The topology numbers always refer to the graphics and tables in section 5 of [8].
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3. Masters from Mint

Master integrals obtained by explicit IBP reduction within .4#” =4 SYM are at least a subset of
the master integrals of the corresponding computation within QCD. For the four-loop form factor,
we have made this more precise by studying a method for obtaining just the master integrals,
without explicitly solving the IBP relations. This method was proposed in [32], building on earlier
work in this direction in [33]. The algorithm has also been incorporated in a public code, the Mint
package [32]. We have applied this algorithm to the four-loop form factor integrals, swapping in
different approaches to perform steps the Mint package cannot perform in its current incarnation.

The basic idea is to count the number of master integrals by exploring only the analytic struc-
ture of the integral topology. Loosely speaking, for a given topology of m propagators, the number
of master integrals can be obtained by counting the number of proper critical points of the sum of
first and second Symanzik polynomials

G(&) = U(a) +F(a), 3.1)

where the proper critical points are defined by

G
8%:0 (i=1,...,m) and G #0. (3.2)
The proper critical points can be found efficiently by computing the Grobner basis of the corre-
sponding ideal
G G
I=(—,...,—,00G—1 33
<aa1 ) b aam ) ao > ) ( )

and then counting the number of irreducible monomials in the obtained Grobner basis.

This procedure has been implemented in the Mathematica package Mint [32]. It works
smoothly for many simple examples, such as three-loop Sudakov form factors. However, in the
four-loop case, two further problems emerge. First, in many cases the computation of the Grobner
basis turns out to be too hard to do in Mathemat i ca, and we solve them by using Macaulay?2 [34]
and Singular [35]. The second problem is that, in a few cases, the critical points are non-isolated,
in the sense that the set of critical points can form an affine variety of dimension > 1. Such cases
cannot be handled by Mint, but can be solved with some extra work. We refer the reader to [14, 32]
for more details.

Given the number of master integrals, one can then choose an explicit set of integrals, as long
as they are independent of each other.

3.1 Results

Table 2: Master integral statistics of Mint basis.

# props 56 7 8 9 10 11 12
all simple 1 8 25 48 52 58 32 20
simple +onedouble |[O O 1 5 1 12 3 14

Combining all possible 34 topologies together, we obtain in total 280 master integrals for four-
loop Sudakov form factors. They are classified in Table 2 according to the number of propagators



Towards a four-loop form factor Rutger Boels

and the power of propagators. Furthermore, 28 basis integrals are of propagator type and 116
basis integrals contain at least one sub-bubble topology. Only the remaining 136 basis integrals
are ‘genuine’ four-loop vertex integrals. The most challenging integrals are among the 34 basis
integrals which contain 12 propagators. We have cross-checked with the reduction of Reduze and
find that all above 280 master integrals are independent.

Since the method based on Mint only relies on the topologies of the given integrals and
applies to arbitrary numerators, the results are expected to apply to any theory, including QCD. We
remind the reader that, in Table 1, the counting of Reduze concerns only master integrals from
the reduction of the .4~ =4 SYM form factor.

3.1.1 An interesting mismatch between Mint and Reduze

While the counting based on the Mint method indeed provides a set of independent basis inte-
grals, we find that the reduction of Reduze tends to include more basis integrals. More concretely,
we find nine corner integrals, containing only up to ten propagators, are taken as master integrals
by Reduze (as well as FIRE), but are reducible according to Mint. In particular, three of them
are corner integrals of only eight propagators.

A few possibilities may explain this discrepancy. First, there is no proof that IBP relations
have included all possible integral relations, so new hidden relations might exist beyond those given
by IBP. Second, the reduction setup of Reduze and FIRE requires a truncation of the numbers
of propagators and numerators. Therefore, it may be possible that some further IBP relations
are missing in the present setup. Third, the implemented method based on Mint may contain a
possible loop hole, namely, it has not taken into account the possible critical points at infinity.” Tt
would be very interesting to explore all these possibilities and understand the precise cause of the
mismatch.

4. Conclusions

We have presented two important steps toward the integration of four-loop form factors. The
first is to identify a basis of master integrals, valid for four-loop, two-point form factors in generic
quantum field theories. This step consists of an approach through computational-algebraic-geometry
methods to identify the master integrals. The second step is the explicit IBP reduction of the two-
point, four-loop form factor in .4~ =4 SYM. This was done through massive computer algebra
using a modified version of the Reduze code. Of course, both steps can and have been compared
and contrasted.

The next step will be the integration of the master integrals. This will allow one to compute
both the planar and non-planar cusp anomalous dimensions at four loops. The planar case is a
known result and will provide an important cross-check for the method. The non-planar case is
presently unknown and would be highly desirable to obtain. Efforts in this direction are under way.

A direction for which fundamental new technology seems to be required is to extend the ex-
plicit IBP reduction for the form factor to more general integral classes than those which appear
in ./ =4 SYM. QCD is an obvious goal here, but also reductions with doubled-up propagators

2We would like to thank Roman Lee for pointing out this possibility to us.
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would be very interesting: these appear for instance when applying dimensional recurrences [36]

or when exploring the method of quasi-finite basis integrals, see [37] [38] [39].
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