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To study the dependence of the muon rate flux on temperature we need to have some measure of 

atmospheric temperature above the detection site. Atmospheric-weighted temperature, known 

also as the effective temperature, is defined as the temperature of an atmosphere that accounts 

for the temperature of the real atmosphere with its varying conditions. In this paper, the 

influence of the atmospheric temperature on the observed muon flux was investigated and the 

results obtained were discussed. Cosmic ray data were obtained using a KACST muon detector, 

which had been in operation since 2002, located at Riyadh, Saudi Arabia (Rc is ~14 GV). 

Radiosonde data were used to calculate two types of weighted temperature, namely dry and wet 

temperatures for all atmospheric profiles. 
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1. Introduction 

 
In order to study the variations of the primary cosmic rays caused by solar and 

heliospheric processes, the atmospheric effects on the secondary muons observed by ground-

based detectors must be considered. The rate of cosmic ray flux can be affected by two main 

atmospheric parameters: (1) atmospheric temperature and (2) atmospheric pressure [1-4].  

Although the barometric effect correction, in which atmospheric pressure at the detector 

level needs to be known[5], is simple, the temperature effect is rather difficult and needs to be 

determined by the overall profile of the temperature at all altitudes of the atmosphere. 

The effect of the atmospheric temperature on the muon count rate is usually studied by 

considering the temperature and/or the height of the pion production level [6-10]. On the other 

hand, the integrated temperature of an isothermal atmosphere with its varying conditions is 

sometimes calculated to study the influence of the atmospheric temperature on the detected 

muons. This temperature is known as the weighted or the effective temperature [11-12].   

In this paper, 11 years of cosmic ray measurements collected from a KACST detector and 

radiosonde data were used to study the effect of atmospheric dry and wet weighted temperatures 

on the muon rate.   

2. Methodology 

 
A KACST detector is a 1 m

2
 plastic scintillator viewed by 120 mm photomultiplier tube 

(PMTs), which are both contained in a light-tight box. The outputs of the PMTs are amplified 

and digitized by a home-made A/D converter. The detector was installed at King Abdulaziz 

City for Science and Technology (KACST), Riyadh (lat. 24 43; long. 46 40; alt. 613 m Rc = 14 

GV), Saudi Arabia and has been in operation since 2002. More detailed descriptions of this 

detector are given in [13-15].Cosmic ray data during large solar flares, magnetic storms or 

Forbush decreases were excluded from consideration in this study.   

Weighted temperatures were calculated using two definitions: dry and wet temperatures. 

The dry weighted temperature can be calculated using the following equation [6,7,9]:  

 

𝑇𝑤𝑑 =
∫

𝑑(𝑥)

𝑥
𝑇(𝑥)

∞

0

∫
𝑑(𝑥)

𝑥

∞

0

            (1) 

 

where x is the atmospheric depth and T(x) is the temperature at atmospheric depths. The 

atmospheric depth has the unit of g/cm
2 

and is defined as: 𝑥 = ∫ 𝜌(ℎ)𝑑(ℎ)
∞

ℎ
; ρ(h) is the 

atmospheric density as a function of height (h) above the earth.  

The water-vapor-weighted mean temperature of the atmosphere is approximated as [12]: 

 

𝑇𝑤𝑤 =
∫

𝑒𝑣
𝑇
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0

                  (2) 

 

where ev is the pressure (in hPa) of water vapor calculated using the dew point temperature [16]; 

and T is the atmospheric temperature at height h (in Kelvin).  
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The relationship between the variations of the muon intensity (I) and the variations of the 

weighted temperature (Tw) can be written as [e.g., 17]: 
Δ𝐼

𝐼𝑚
= 𝛼

Δ𝑇𝑤

𝑇𝑤
                             (3) 

𝐼−𝐼𝑚

𝐼𝑚
= 𝛼(𝑇 − 𝑇𝑤𝑚)               (4)  

Here  is the temperature coefficient and Im (159.31 in this study) and Twm are the mean values 

of the muon rate and the weighted temperature during the study period, respectively.     

3. Results 

 
Routine radiosonde data from Riyadh airport for the period of study were used to calculate 

the atmospheric dry and wet weighted temperature overall profile of the atmosphere using 

equations 1 and 3, respectively. Corresponding pressure-corrected muon measurements were used. 

The barometric coefficient used for correcting the data for pressure was 0.18% /hPa in 

accordance with our previous extensive study [ 5].  

Figure 1 shows the inter-annual variations of the measured muon rate versus the (a) dry weighted 

temperature Twd and (b) wet weighted temperature Tww, from July 2002 to March 2012. The Twd ranges 

between 225 K and 235 K with a mean value of 230.12 ± 2.1 K, whereas Tww  is confined between 273 and 

298 with a  mean of 287.52 ± 6.2 K. It is noticeable that the Tww are higher than the Twd  by about 58 degrees 

and have higher experimental error. Although the two temperatures were calculated using different methods, 

they are both anticorrelated with the measured cosmic ray muons. While the strength of this relation between 

the two parameters is different from one year to another, the association is obvious throughout all years. These 

results are consistent with those previously found for different experiments [4,7-8]. 

 

Figure 1: One month average counting rate of cosmic ray muons versus (a) Twd and (b) Tww for the 

period between 2002 and 2012. 

Figure (2) is a scatter plot between the  
Δ𝐼

𝐼𝑚
  against (a)  

Δ𝑇𝑤𝑑

𝑇𝑤𝑑
   and (b) 

Δ𝑇𝑤𝑤

𝑇𝑤𝑤
.  The straight 

line is the line of best fit between the two parameters. Although there is spread in the data, the 

negative relationship between the two temperatures and the muon rates is apparent. Regression 

analysis between  
Δ𝐼

𝐼𝑚
 and 

Δ𝑇𝑤𝑑

𝑇𝑤𝑑
  for the whole data gives a value of 𝛼𝑤𝑑=-0.14±0.002 [%/K] with 
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a correlation coefficient of 0.52. On the other hand, 𝛼𝑤𝑤   has a value of -0.031±0.001 [%/K] 

and a correlation coefficient of only 0.31.   

 

Figure 2: Regression results between one month mean muon variations ΔI/Im versus (a) ΔTwd/Twd   and 

(b)ΔTww/Tww  for the period between 2002 and 2012. 

Figure (3) shows the monthly variations of the measured muon rate versus the (a) Twd and (b) Tww. 

The seasonal variations between the muon rates and both temperatures are clearly observed. The muon rate 

decreases as the temperatures increase. The negative temperature effect on the cosmic ray muons is due 

to the expansion of the atmosphere as a result of the atmospheric temperature increasing during 

summer times causing longer distances to be travelled by the decayed muons and the opposite 

occurring during winter times. This relationship between the two parameters is presented in Figure 4. 

Regression results give values of  𝛼𝑤𝑑 = -0.176 ± 0.02 [%//K] and -𝛼𝑤𝑤 = 0.038 ± 0.005 [%//K] with 

correlation coefficients of 0.94 and 0.86, respectively. Although using the monthly data gives 

better correlation coefficients than the inter-annual data, the temperature coefficients obtained 

from both data sets do not differ much from each other. To compare our results with some other 

studies, muon data obtained from URGAN hodoscope [7] estimated a value of 𝛼𝑤𝑑≈-0.23% [K]; 

and [1] presented a value of 0.26% [K]. On the other hand, underground muon detectors 

presented positive temperature coefficients𝛼𝑤𝑑 [17-18]. No previous works have been reported 

to calculate the water-vapor-weighted temperature. 
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Figure 3: Superposition of the monthly mean of the cosmic ray muon rates versus (a) Twd and (b) Twd, 

over the period 2002–2012. 

 

Figure 4: Same as Figure (2) but for the monthly mean values (data of Figure 3) of the muon variations 

ΔI/Im   versus (a) ΔTwd/Twd   and (b)  ΔTww/Tww  for the period between 2002 and 2012. 

 

Figure 5 shows the corrected muon counts over a period of two years using the two weighted 

temperature coefficients. We can see that the correction for the temperature effect does not exceed 

more than 1%. Additionally, we can see that the correction for the temperature effect did not remove 

the seasonal variations of the detected muon and other causes of this seasonality need to be 

investigated.  
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Figure 5: Muon rate compared with the rate corrected using Twd and Tww. 

 

4. Conclusions: 

 
This paper provides our next step in the atmospheric correction of cosmic ray muons, 

namely correction due to  integrated atmospheric temperatures. Cosmic ray measurements from 

2002 to 2012 were obtained from a KACST muon detector. Corresponding radiosonde data 

were used to calculate the water vapor and dry atmospheric-weighted temperatures. Although 

the former temperatures were warmer than the latter, it was found that the cosmic ray muon rate 

is anticorrelated with both temperatures. This relationship was much clearer in the monthly data 

than the inter-annual scale. Our results are comparable with those obtained previously by 

different investigators. 
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