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For the current generation of Imaging Atmospheric Cherenkov Telescopes (IACTs), with their
large mirrors and their cameras with fine segmentation of photodetectors, the focusing capability
is arelevant issue. The optical system of an IACT has a limited depth of field. Therefore, focusing
the telescopes close to the shower maximum in the atmosphere has a significant impact on the
data acquisition and analysis. As the distance of the shower maximum to the telescope depends
(among others) on the zenith angle, an adjustable focus would be desirable. The fifth Cherenkov
telescope of the H.E.S.S.-II array is equipped with a focus system which allows to adjust the
position of the camera along the optical axis, possibly during data taking. This impact has been
studied on gamma-ray Monte Carlo simulations, and the results in terms of gamma-ray trigger
rate, energy reconstruction and gamma-ray effective area will be shown.
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1. Introduction

The fifth telescope of the H.E.S.S. array is an unique instrument for many aspects. A focusing
system has been installed on the camera pad. The distance of the camera to the dish can be adjusted
to change the focus of the telescope. This feature was motivated by the increased focal length of
this telescope compared to the smaller ones of the H.E.S.S. array, that leads to a shorter depth
of field. In this note, the performances granted by the focus system are presented. Comparisons
between Monte Carlo simulations and data are provided.

2. Hardware description

The design and construction of the focus system for the fifth telescope has been challenging.
Indeed, given the size of the telescope, the construction of a shelter enveloping the camera in
telescope parking position was not possible. Moreover, the access to the camera for maintenance
operation is very difficult, given the telescope structure and the inclination of the telescope in
parking position. It was thus decided to construct a device to unload the camera. The focus system
for the camera had to be compatible with such a device.

This focus system was designed to manage two main required functions: position the camera
accurately on the focal axis and safely lock the camera on the telescope structure with an accuracy
of 0.35 mm. The camera is locked in using a pneumatic system composed by four toggle fasteners
and four jacks. For safety reasons, the control of this system is conditioned by hardware conditions.
A mobile part allows the displacement of the camera along the optical by the means of 4 rails
and two independent brushless motors. The system has been initially positioned such that the
movement range translates into a freedom of 156 mm (70mm) away (toward) the dish from the
position corresponding to the lid surface at the dish focal distance.

Figure 1: Photography of the focus system in CT5 structure. The red tubular structure corresponds to the
telescope structure. The grey part is the focus unit.

The system is fully automatized and is based on two parallel axes which are not mechanically
coupled. The control architecture is based on a Programmable Logic Controller (PLC) which is
composed by two Central Processing Unit, two fieldbus (one being synchronized) for the deported
devices and specific variators which are able to manage power cuts and synchronized displace-
ments. The monitoring of the system (coupled with the loading system) is done through an OPC
server communicating with the PLC.
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Figure 2: Left: Comparison of a 50 GeV simulated y-ray for different focused distance. The telescope is
focusing at 5 km in the upper left panel, at 10 km in the upper right panel, at 15 km in the lower left panel
and at infinity in the lower right panel.

3. Monte Carlo simulations

A previous study showed the benefits of the focus in term of trigger rate and reconstruction
performance [1]. A simple Hillas reconstruction was used because of lack of advanced recon-
structed method at that time. The available model analysis [2], allow us to understand, quantify and
optimize the effects of the focus with the best performance analysis in the H.E.S.S. collaboration
for the mono telescope analysis mode.

3.1 Focus impact on the y-ray images

Within the simulations package Smash for H.E.S.S., the focus of the telescope can be adjusted
according to needs. It affects the shape of the images by changing the amount of Cherenkov
photons per CT5 camera pixel. Fig. 2 shows camera images of a simulated y-ray of 50 GeV seen
by CTS5 at zenith. The impact of the focus is visible in the larger image for a focus to 5 km and to
infinity with respect to the images for a focus at 10 km and 15 km. These latter focus values fall
into the typical range of shower development altitude, and generate a correctly focused image. On
the other hand, a focus at 5 km and infinity induce an unfocused and thus broader image.

3.2 Focus impact on the y-ray trigger rate

The work presented here focus mainly on low energies, where the benefits of the focus for
mono telescope observation are of prime importance. At higher energies, the multiplicity of the
events will reduce the impact of the CT5 focus. Results up to 800 GeV are presented in the follow-
ing, assuming that most of the events above that threshold will trigger the H.E.S.S.-I telescopes as
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Figure 3: y-ray trigger rate of MC simulations at zenith for different focus altitude and energy. The focus at
infinity is shown on the figure at 40 km distance.

well. The low statistics of MC simulations available at low energies prevents to precisely quantify
the focus impact below 50 GeV. Only results obtained at zenith are presented, where the focus
has the more important impact for this elevation. Similar effects as presented in the following are
observed for lower elevation, but with lower amplitude.

Fig 3 shows the evolution of the y-ray trigger rate as a function of focused altitude at zenith
and for several fixed energies. A significant increased of the y-ray trigger rate is visible focusing to
typical y-ray atmospheric shower altitude compared to a focus at infinity. A maximum is observed
at ~12.5 km. The gain, compared to infinity, is ~8% for 50 GeV v rays. This evolution is expected
from the image observed on figure 3. When correctly focused, the core of the y-ray images is more
compact and the central pixels of the images are brighter. For a given image, a correct focus on the
shower core increases thus the probability for the event to trigger the camera.

3.3 Comparison between focus at 15 km distance and to infinity

The mirror alignment was performed during summer 2012 with a focus system at the 0 posi-
tion which corresponds to a distance between the camera lid surface to the virtual central mirror
equivalent to the dish focal distance (36 m modulo the thermal expansion of the steel structure).
During the commissioning period, the focus system position was set at 66 mm during observations.
Given the 20.6 mm width of the camera lid, this position of the focus system corresponds to a shift
of the entrance plane of the camera to the focal plane of 86.6 mm. This shift translates into a focus
at 15 km distance of the telescope. This focus distance was decided according to previous study
(see for instance [3]). A fixed position was decided for the first H.E.S.S.-II observations. As the
camera position is fixed and the depth of field is limited, this means that the focused altitude vary
with the observation zenith angle.
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Figure 4: Left: Evolution of the energy bias as a function of the energy obtained from y-ray simulation
focusing at infinity in green and focusing at 15 km distance in blue. Right: Evolution of the energy resolution
as a function of the energy obtained from 7y-ray simulation focusing at infinity in green and focusing at 15 km

distance in blue.

The semi analytical model analysis consists in the comparison pixel by pixel of the obtained

images with a semi-analytical model of the y-ray showers. Therefore it is very sensitive to the

shape of the y-ray images. The focus, which induces a smearing of the images, affects thus the

performance of this analysis in several ways.
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Figure 5: Comparison of the Mean Scaled Shower Goodness distribution obtained from y-ray Monte Carlo
simulations focusing at infinity (filled histogram) and 15 km distance (ComValue - bold line). The panels
correspond to several simulated y-ray at zenith and with energy ranging from 50 GeV to 500 GeV.

e Since model templates are produced without focus assumption (corresponding to an infinite

depth of field), a smeared peaked image will force the fit to preferentially choose a higher
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energy template. Figure 4 shows the energy bias and resolution of model mono analysis for
a focus at infinity (green) and at 15 km distance (blue). An additional systematic energy bias
is introduced by a focus at 15 km distance compared to infinity. Around +10% of energy
bias is introduced at 125GeV at zenith and increases at low energies. The same behavior is
observed at higher zenith angles but with a slightly lower amplitude. The energy resolution
is not significantly affected by the focus.

o The modified shape of the y-ray images provides a different result of the likelihood ratio test
between the fitted model template and the smeared image. This ends in a different behavior of
the main discriminating variable (MeanScaledShowerGoodness - hereafter MSSG). Figure 5
shows the distribution of this variable with a focus at infinity, filled in grey, and focusing at
15 km distance in black. A significant shift and broadening with the energy are introduced
by the different focus.

e Others discriminating variables such as PrimaryDepth (first interaction atmospheric depth),
are good probes of the y-ray reconstruction power. At low energies, thanks to the more
peaked images, the distribution is narrower around 1 (as expected for 7y rays) revealing the
enhanced 7y-ray reconstruction power.

e Control variables such as MeanScaledBackgroundGoodness (likelihood of null hypothesis
for pixels without expected signal) exhibit normal distributions, showing that the effects of
focus are understood.

4. Monte Carlo - Data comparison

The previous section shows the effects of the modification of y-ray images due to the focus
on the model reconstruction. The predictions from Monte Carlo simulations have been tested on
data. PKS 2155-304 has been chosen to test the Monte Carlo simulations because of its important
exposure. Its important y-ray flux allows a substantial ON-OFF data set and therefore a y-ray
sample with low background contamination. The simulation used for the comparison are y-ray
spectrum and the closest configuration from the known spectrum of PKS 2155-304 was chosen. A
spectrum with an index of -3.0, an offset of 0.5°, at zenith, and an azimuth angle of 180°, has been
chosen and analyzed using the same selection procedure than the data.

Figure 6 compares the MSSG distribution obtained on PKS 2155-304 data and Monte Carlo
simulations. The MC distributions were obtained for y rays with a focus at infinity (left) and
at 15 km distance (right). The data have been acquired with a focus at 15 km distance. MC
distribution with an focus at 15 km distance matches nicely the data distribution. The shift of the
MSSG confirms the focus effects seen in the simulations.

The very nice agreement between Monte Carlo simulations (with a focus at 15 km as chosen
during data acquisition) and Data with the current mono mode analysis, proves that the effects of
the focus are understood and fully taken into account.
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Figure 6: Comparison between Monte Carlo simulations following a spectrum with ['=-3 (focus at 15 km
distance) and data taken on PKS 2155-304. Left:MC with a focus at infinity. Right:MC with a focus at
15 km distance.

5. Instrument response functions (IRFs)

The focus system is affecting, by changing the shape of the air showers images, each step
of H.E.S.S. analysis chain. The IRFs will strongly depend on the focus distance of the telescope.
IRFs have been computed, taking the commissioning position of the focus system to establish more
realistic description of CT5.

Figure 7 shows the improvement of the effective area of the H.E.S.S.-II model Mono analysis.
The updated acceptance (in red) is increased by a factor of ~9 at ~50 GeV compared to a focus
at infinity. The improvement of the acceptance is not only due to the increased trigger rate, only
+~5% more Y rays events being expected at 50 GeV (see section 3.2). Thus, the more focused
images strongly enhance the reconstruction power of model analysis, and thus the event selection
cuts.

The acceptance at high energies is reduced by a factor ~2 at ~10TeV. At these energies, the
air shower extend more deeply in the atmosphere. The various part of the shower coming from
different distance, the focus to a finite distance leads to a smearing varying over the different
part of the image. Indeed, the focus altitude at ~15km creates different smearing between the
beginning and the end of the shower, whereas the model analysis assumes an infinite depth of field
(all direction or distance perfectly focused). This effect actually mixes with the intrinsic PSF of
the mirror facets and the optical aberration coming from the dish mount. To take into account this
effect, a constant smearing for all part of the shower is applied and corresponds roughly to the
effect expected for showers observed with an infinite focus. The model reconstruction fit procedure
converges on wrong templates and events may be rejected. If the shower image is cut because
limited field of view of CT5, which happens more frequently with increasing energy, this effect
will be amplified.

However, this loss can be reduced by introducing the focus smearing in the fit procedure. This
implementation is under study and significant improvement is expected. Moreover, at high energies
the stereoscopic analyses would compensate the loss due to CT5 only.



The H.E.S.S.-1I focus system C. Trichard

3 3
< <, s
Fd [id3
§ I w’m*.‘“ :é : /
e -l e &
L o eettean., L
L 7 "o..' L ,//
/ [
I /f . i
[/ s
10 ‘/ 10 o/
[ L [
k /| r /|
r / C /|
ool e il Ll L eoiseloceedddiiil il L
10" 1 10 10" 1 10
Energy (TeV) Energy (TeV)

Figure 7: Comparison of y-ray acceptance focusing at infinity (blue curve) and at 15 km distance (red
curve). The left panel is obtained for y-ray simulations at 18 degrees zenith angle, whereas the right panel is
obtained for y-ray simulations at 50 degrees zenith angle.

6. Summary

The fifth H.E.S.S. telescope is equipped with a focus system that allows to displace the cam-
era with respect to the mirrors. The impact of the focus on the analysis of data obtained with this
telescope has been studied. It has been shown that applying a correct focus during data taking has
a strong impact on data analysis. The focus changes the recorded image morphology, and induces
a significant shift in the distribution of all discriminant variables. Focusing close to the altitude of
the y-ray shower maximum allows to maximize the y-ray acceptance at the energy threshold of the
instrument. On the other hand, introducing the focus and more generally the characteristics of the
optics (optical aberrations) into the fit procedure of the semi-analytical model analysis is mandatory
to optimize further the analysis performance over the full energy range.
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