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1. Introduction

We describe a modern timing system for astroparticle physics experimententrzed as a
prototype for the Tunka-HiISCORE array. Tunka-HiISCORE is a larga &ide angle detector for
gamma rays from 20 TeV to few PeV, and cosmic rays above few PeVy godstruction in the
Tunka Valley, Siberia [1]. It is a non-imaging atmospheric Cherenkov lighttfsampling array,
covering an area of up to 100 Bm

For precision reconstruction of the atmospheric air shower directiorme@kev light arrival
times at all detector stations have to be measured with (sub-) nsec relative ireitigion. To
reach this we used - for the first time in a large astroparticle physics expdrinttee new White
Rabbit technolgy for precision time and frequency transfer [3]; thogawy the substantial design
and construction effort for a custom-made solution.

This paper summarizes the laboratory test and long-term field experigaiceed with the
White Rabbit setups for the HISCORE prototype timing system from 2012-28d&ion 2 briefly
introduces the White Rabbit technology; section 3 describes the variupssesed at HISCORE,
their methodics and physics results. We conclude, that White Rabbit fulfilie@lirements for
precision timing in next generation large experiments like CTA [4]. White Rdiastthe potential
to become a standard technology in this field (“time-synchronization out dfdk’.

2. Clock distribution and time-stamping with White Rabbit

Figure 1(a) gives a typical White Rabbit (WR) setup [3, 5]. The basétigeedients are (1)
WR-Switches (WRS) and (2) WR-Nodes, connected by standard Gigggitnet fibers. The WRS
are arranged like in a normal ethernet-network; the central WRS (@faster Switch) acts as the
time source (e.g. connected to a GPS antenna).

White Rabbit is build on Gigabit Ethernet (1000base-BX10) and takemaage of the Ether-
net standards Synck and Precision Time Protocol. It offers subeessfam, with excellent clock
phase stability. It utilizes one fiber for each WR-node for both syncéhation and user data, and
compensates dynamically for clock drifts due to e.g. environmental inflsgtemperature).

The WR-node allows to interface the user system (eg. the DAQ of a detdeton or a
telescope) to the WR-time system: by either time-stamping sigmaisthe detector and/or by
supplying clock-information (like PPS or periodic clock signdts)he detector, as shown for the
lower WR-node in fig.1(a) by “trigger” and “clock” signals. As the WRdeadevice we use for this
work the “Simple PCle FMC carrier” (SPEC), shown in fig.1(b) - a reliabtekiorse of the WR-
community [6]. It has a Spartan-6 FPGA (with the WR PTP Core, optionaboufirmware and
software) and can accommodate FMC-mezzanine cards. We use the FOBED, a 5 channel
digital /0O card, for analog/digital trigger input, control signals, and PR$ZMlock output (e.g.
for clock performance tests).

We summarize the main arguments to decide for White Rabbit:

- Clock-driven architecture: precision clocks are localized inside threfend stations (nodes)

- Time stamping at front-end enables complex digital trigger schemes (rigkiae or array)

- Availability and commercial support for all main components

- Open source approach (firmware/software), good documentatiocoamehunity support
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Figure 1: (a) The White Rabbit network, made up of WR-switches (Grand Master anualor
WRS) and of WR-nodes. The WR-nodes can deliver clock-sigoaknd/or extract trigger time-
stampsfrom the associated detectors, as symbolized for the lower-right WR-nodags®. (b)
Example of a WR-node: The SPEC card, the WR-node used for this Whekprecision time, kept
on the Spartan-6 FPGA is synchronized through the fiber cable (SFR teiitral WR-switch.

- Application interfacing can be reduced to simple, passive FMC mezzanines

- Design simplicity and flexibility for even large scale setups

- Detailed calibration procedures and online performance monitoring siggpo

- Cost- and time-efficiency compared to custom-made solutions (manpoweanastiment).

3. Experimental setupsat HISCORE

Tunka-HiISCORE [1, 2] is a non-imaging atmospheric Cherenkov light-fsantpling array,
build of many optical detector stations, located at typical distances of Q002 The detector is
under construction, it will cover an area of 1 kin the inital, and up to 100 kfin the final phase.

3.1 TheHiISCORE-SPEC and Laboratory tests

To apply White Rabbit for trigger time-stamping in HISCORE, the standard pedioce of
the SPEC-node has been extended. As presented in [5], the SPEGdd3gA was modified and
allows now to

(1) time stamp external digital trigger signals with ns-precision, and trattefeime-stamps
and counter information via WR-fiber to the WR-master; or

(2) form the trigger decision on the WR-node by ns-sampling of an anabedg signal, dicrim-
inated against a comparator threshold; a trigger being generated-afteonsequtive ns-samples
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being high (typically set to 9 ns). The trigger signal is time-stamped and wetesp like for (1);
additional DAQ-1/O signals are generated, see [5, 8].

Laboratory tests of a WR-system, with all components located closebytloé@ossibility to
ultimatively check the clock performance (precision, resolution) for @eeble of WR-nodes by
comparing them directly against each other or to precisely defined mnefeggnals (all brought
by direct cable connections). With such “table-top” setups, including clictaenber temperature
tests (fiber: -20...+4€; SPEC: 0...+3¥C) the basic timing precisison (clock jitter) was measured
to be better thamwyyr ~ 0.2 ns [5]. A recent precision measurement with a HydraHarp-400 setup
by PicoQuant [11] with picosecond event timing precision, shown in fig(ag gives a time jitter
for two SPEC-nodesiyr< 60 ps. Also, the stability of the nsec-trigger-stamping is excellent. The
result for the “jitter” of the digital time-stamps from two WR-SPECs is shown ir2{ig) [5]. All
measurements are in agreement with a clock precision better than 0.15 n®psod# for the full
temperature range investigated.
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Figure 2: Sub-nsec precision WR-timing in laboratory te&}sClock phase stability: Distribution
of time difference between PPS clock-pulses from two WR-nodes (SRIEGaGr a 15-hour run
with a HydraHarp-400 setub) Trigger stamping: Difference of digital trigger time-stamps (1 ns
resolution) of the PPS pulses from SPEC1/2. SPEC2 and the 500 m dib&rere subjected to
climate chamber temperature ramps betweear@ 30 C. For details see [5] (time-offset0 due

to cabeling).

3.2 Setupsat Tunka-HiSCORE
We report results from various HISCORE setups, that operated be®@d&nand 2015.

e Basdinetests

With the HISCORE-3 prototype array (winter season 2012/13) we depldyieehodes in
each of the three stations - mainly for methodical tests, as shown in figur®8k ghase
stability and trigger stamping performance between different stations, amadependent
(redundant) WR-nodes located inside a single station was obtained. Withle-ttg”-like

setup in the data-center, the temperature dependent fiber-delay catipengas studied
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Figure 3: (a) The complex HISCORE WR field-setup, as operated in 2012/13 to evaluate time-
synchronization and nsec-trigger time-stamping by monitoring WR-nodefj/HiSCORE pro-
totype station (2012/13) with DAQ and WR components.

(long fiber to Tunka-23), for details see [7, 10]. Note the “monitoring YWiRle” as in
Station-1 (fig. 3(a)) - an example of a possible verification configuratidren there is no
external, independent source of precision time signals to be fed to the st@tiétrnodes).

e Physics Setup: HiSCORE-9
The 9-station array HISCORE-9, operating over the winter-seasonf2f18as the first as-
troparticle physics setup using WR for longterm operation (see sects8.3.4 below).
Two independent DAQ-systems were build for HiS-9 [2, 8]. The WReld3AQ-2 is out-
lined in fig.4; emphasis was on an end-to-end functional test of the WR timehsynization
functionality with a prototype DAQ.
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Figure 4: The HISCORE-9 DAQ-2 system, with DRS4-Evaluation Board ahd@ARabbit timing
system (a) Station setup (with DRS4-EB, WR-SPEC and MiniP®). Schematics of the setup in
Station and Center for DAQ-2 (DAQ-1 in grey). See also [8].
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Figure 5: HISCORE-28 array layout: 28 si
tions at 100 m spacing forming a super-cell
structure, on a total area of 450 600 m.
The HiS-9 stations are indicated, as well as
the DAQ-center.

Figure 6: A HISCORE optical station, with
four 8 PMTs and Winston Cones, inclined
by 25 southwards.

e Physics Setup: HiISCORE-28
HISCORE-9 was upgraded in 2014 to the HISCORE-28 array [2], sesbfiggsd 6. The
HiS-28 DAQ combines the DAQ-1 timing system with the WR-SPECSs, which time-stdmp a
DAQ-1 generated trigger; giving a long-term direct cross-verificatimoth clock systems.
First results indicate very good precision of <0.3 ns relative jitter (analygisogress).

3.3 Calibration with a pointlike LED source

Dedicated LED-calibration runs were performed with a powerful LEDteda 100 m outside
the HISCORE-9 array, generating simultaneous light flashes in all statieadigs’) - to calibrate
residual time offsets (PMTs, FE-electronics), and to verify the relative tatibration and preci-
sion of the DAQ-1/2 systems. For both, good agreement was foundpas $br WR in fig.8 for
the fitted time-residuals; it gives an upper WR-precision limit of 0.45 ns [8].

3.4 Operation with Air Shower

A final verification of precise and stable timing operation is the full reconstm of cosmic-
ray air showers, registered in routine operation with HiS-9 for 2013/t4Hi8-28 (2014/15; in
progress). Using the calibration from LED runs, reconstruction of llesver front direction and
position is done for HiS-9 [2, 8]. Figure 9 displays a reconstructed shewent (based on WR-
timing only); the fitted time-residual distribution indicates an upper limitdgg of <0.5ns [8].

4. Summary

We applied the new White Rabbit technology for sub-nsec precision timehsymization
of the HISCORE DAQ-system in various construction phase setups. Tinal&ee solution is
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Figure 7: The HiS-9 array layout: Nine sta- Figyre 8: LED calibration: Distribution of
tions and LED source position (red star) for i residuals for LED events (all nine stations

calibration runs; insert: station setup for cali- superimposed). Black dots: data; Red line:
bration runs with 45%inclined reflectors. simulated events.

based on standard WR-components (SPEC, DIO5Ch and WRS), with HRE&Pecific firmware
developed for nsec-time-stamping, triggering, DAQ-control; and with sugpr WR monitoring.

Laboratory and special field setups yielded a timing-precigigrof better than 0.2 ns (<60 ps
in table-top setups). We gained long-term field experience with the HISCO®&ay, with WR
embedded into the full DAQ, and routinely recoreded cosmic-ray dataZ6d8-2015. From exter-
nal LED-calibration and air-shower reconstruction we obtain an upperfiimthe WR-precision
owr Of better than 0.5 ns (likely driven by dominant non-WR systematics: hasejwai-shower).
An ongoing, direct harwdare test installed with HISCORE-28 indicaigs<0.3 ns under real life
conditions.

We emphasize an advantage of the WR-architecture, beyond precision:tidgitgl, fully
calibrated times are instantaneously available at the front-ends, whictyfjcantly simplifies
the DAQ, and (2) allows for digital trigger concepts based on nsec timingnexidneighbor/array
topologies - which can be fast, complex, and yet simple to design [9]. loadeast: interfacing a
given experiment to WR can be kept as simple as designing a (passiveammez-interface card.
Precision, stability and overall system performance of the White-Rabb#doiming makes it a
prime candidate for next generation large scale experiments like CTA[4].
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Figure 9: EAS shower reconstruction. (a) Arrival time delay vs distéé&®m the shower axis;
for an event. Red/white dots: stations retained / excluded in the final filimedreconstructed
shower profile. Small panel: Reconstructed core position (black stararém of the circles is
proportional tologA, with A the station signal amplitude. (b) Distribution of fit residuals after
shower reconstruction. Black dots: data; Red line: simulated events; Beigghwissian data fit.

[2] Budnev, N. et al, The Tunka detector complex: from cosmaigto gamma-ray astrophysics, Proceed.
ECRS-2014, Kiel, 2014

[3] J.Serrano et al., The White Rabbit Project, ICALEPCS 2009
http://accelconf.web.cern.ch/accelconf/icalepcs2089ers/tuc004. pdf

[4] Oya, I. et al, Status and plans for the array control artd daquisition system of the Cherenkov
Telescope Array, contribution to ICRC2105

[5] M.Brickner and R.Wischnewski, A White Rabbit setup fobsisec synchronization, timestamping
and time calibration in large scale astroparticle physikgeaments, Proceed. ICRC-2013, Rio de
Janeiro, ID-1146

[6] WR-supplier:SevenSols, Spain, http://www.sevensols.co@reotech, Poland, http://www.creotech.pl

[7] M.Bruckner et al., Results from the WhiteRabbit sub-risee synchronization setup at
HiSCORE-Tunka, Proceed. ICRC-2013, Rio de Janeiro, ID8115

[8] Porelli, A. et al, Timing calibration and directionala@nstruction for Tunka-HiSCORE, Proceed.
ECRS-2014, Kiel, 2014

[9] Shayduk, M. et al, A concept of wide-angle Cherenkov garay instrument with minimal imaging,
contribution to ICRC2105, ID-0536; Shayduk, M. et al, A Idmgffer readout system for large-area
Gamma-ray facilities, contribution to ICRC2105, papeBsHD

[10] Tunka-HiSCORE-Collaboration, Status of the HISCORReariment, Proceed ICRC-2013, Rio de
Janeiro, ID-1164

[11] M.Wahl, H.J.Rahn, T.Rohlicke et al., Scalable timeretated photon counting system with multiple
independent input channels, Review of Scientific Instrusievol.79, 123113 (2008)



