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Three direct measurements of the atmospheric νe+ ν̄e and νµ + ν̄µ neutrino fluxes were performed
using the Super-Kamiokande water Cherenkov detector: the directionally-integrated energy spec-
tra, the azimuthal spectra, and the modulation of the fluxes with time over the 11-year solar cycle.

In particular, the energy spectra in the sub-GeV to TeV range was measured and compared
to the predictions of various published flux models. While none of the models were strongly
inconsistent with the data, some preference was seen for the HKKM11 model as the most realistic
model.

The azimuthal analysis measured the east-to-west asymmetry in the neutrino flux, caused by
the geomagnetic field, for both flavours at > 5 σ . Measurements were made of the strength of the
effect as functions of energy and zenith angle. There was also an indication that the alignment of
the asymmetry was dependent on zenith angle, seen at the 2.2 σ level.

A search for a long-term correlation between the atmospheric neutrino flux and the solar mag-
netic activity cycle was performed, however the expected effect based on the HKKM model was
calculated to be relatively small. An indication of a correlation was seen at the 1.1 σ level. During
particularly strong solar activity events, known as Forbrush decreases, no theoretical prediction is
available, but a deviation from the expected neutrino event rate is seen at the 2.4 σ level.
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1. Introduction

Atmospheric neutrinos are generated from the decay of mesons produced in cosmic-ray in-
teractions in the Earth’s atmosphere, and are one of the main experimentally available neutrino
sources. Since the first detection of the atmospheric neutrino in underground experiments in the
1960s [1, 2], further measurements of them brought the discovery of neutrino oscillation (and thus
finite neutrino masses) in 1998 [3]. Since then the understanding of the oscillation parameters
has improved quickly, by using the atmospheric [4] data in combination with solar [5, 6], reac-
tor [7, 8, 9, 10], and accelerator [11, 12, 13, 14] sourced neutrinos.

The atmospheric neutrino sample spans a wide energy region, peaking at O(MeV) but so far
measured up to O(PeV), and atmospheric neutrinos can be detected up to ∼ 13,000 km away from
their initial creation point (i.e. after crossing the diameter of the Earth). They are thus a useful
source as a varied and high-statistics neutrino beam, however to understand and use them as a
sample, an accurate prediction of the expected flux depending on neutrino flavour, energy, direction,
and time is required. For example, the discovery of neutrino oscillation was by comparison of
their expected zenith angle distribution with and without oscillation applied. Furthermore, the
atmospheric neutrino is not just a signal but also a background source to many other experiments,
such as astrophysical neutrino, proton decay, and dark matter searches. An accurate prediction of
the flux is thus of paramount importance to many current and future experiments. As one example,
the planned Hyper-Kamiokande [15] experiment could use the atmospheric sample to uncover the
neutrino mass hierarchy.

Current atmospheric neutrino flux predictions are given by Monte Carlo simulations by several
groups, such as the HKKM [16], Fluka [17], and Bartol [18] models. These models are based on
data such as the primary cosmic ray proton flux and the secondary muon flux, measured in the
atmosphere by particle detectors on balloons and spacecraft, and hadron production measured in
accelerator experiments. Direct experimental measurements of the flux energy spectra were made
by the Frejus [19] collaboration (before neutrino oscillation was known), and more recently by
the AMANDA-II [20, 21] and IceCube [22, 23, 24] collaborations at higher energies (up to the
100 TeV range).

The estimated uncertainties on the simulations, especially at lower energies, were historically
much smaller than the uncertainties on the direct experimental measurements of the flux. However,
as the current generation of neutrino detection experiments improve statistics and reduce system-
atic uncertainties, measuring the atmospheric neutrino flux by direct data measurements becomes
increasingly useful – allowing more accurate cross-checks and feedback to the future development
of the simulations, and discovery of several new effects that have been predicted by the simulations
but not yet observed, such as directional asymmetries and modulation over time. Specifically this
thesis presents three direct measurements of the atmospheric neutrino flux at Super-Kamiokande
(SK): the directionally-integrated energy spectrum of the flux (with high statistics in the 100 MeV
to 10 TeV range), the azimuthal spectrum, and the modulation of the flux with time over the eleven-
year solar cycle.
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2. Measurement and Results

Measurements of the atmospheric neutrino flux were performed using the water-Cherenkov
detector Super-Kamiokande [25], which has the world’s largest dataset of atmospheric neutrino
interactions, with an exposure of approximately 315 kton yr. The atmospheric νe + ν̄e and νµ + ν̄µ

fluxes were measured and analysed as a function of energy, azimuthal direction, and time, with a
detailed analysis of systematic errors.

The energy spectra were measured in the range 100 MeV up to 10 TeV, as shown in Fig. 1. Our
measured data provided significantly improved precision up to 100 GeV, and the first data below
320 MeV. We compared our results against the predictions from several atmospheric neutrino flux
models, as shown graphically in Fig. 2. A numerical comparison was performed by calculating the
χ2 statistic, taking into account the error correlation matrix. The combined χ2 of the νe and νµ

fluxes (corresponding to 23 bins) was found to be 21.8, 25.6, and 30.7 for the HKKM11, Fluka,
and Bartol models respectively. We see that while none of the current generation flux models are
strongly inconsistent with our data, there was some preference for the HKKM11 model as the
best-fit to our data. Energy spectra measurements were also obtained using separate neutrino and
antineutrino enriched samples, which also showed agreement with the current flux models.

The azimuthal spectra showed an east-to-west dipole asymmetry in the neutrino flux, caused
by the geomagnetic field, for both neutrino flavours at > 5 σ . The plots used to determine this
significance are shown in Fig. 3, from which we define the parameter A as

A =
neast−nwest
neast+nwest

(2.1)

where neast (nwest) represents the number of east-going (west-going) single-ring events in the SK
dataset1. This parameter is simply a measure of the dipole asymmetry strength; the significance is
defined as ∆A/A. Our measurement gives the discovery of the effect for the νµ flux. The strength of
this dipole asymmetry was furthermore shown to depend on neutrino energy and zenith as predicted
by the HKKM11 model, as shown in Fig. 4.

Furthermore, an indication of a predicted shift of the dipole asymmetry angle depending on
the zenith angle was seen at the 2.2 σ level, by using the parameter B in the fitting

k1 sin(φ +B)+ k2 (2.2)

where k1 and k2 are free parameters, and φ is the azimuthal angle. This parameter as a function
of zenith angle is shown in Fig. 5, and the significance was taken as

√
χ2

flat−χ2
MC, where χ2

MC
is the χ2 statistic with respect to the HKKM11 MC prediction and χ2

flat is with respect to a flat
distribution (i.e. assuming no zenith dependence of the dipole angle), considering e-like and µ-like
events simultaneously. This is the first attempt at a measurement that explores the geomagnetic
field effects on the neutrino flux beyond a simple east-west asymmetry. Altogether, these azimuthal
measurements give confidence that the flux simulations correctly model the complicated effects of
the geomagnetic field.

1Which is a sample whereby a single electron-like or muon-like track is reconstructed inside the detector, and is a
very high purity νe or νµ induced sample.
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Figure 1: The measured energy spectra of the atmospheric νe + ν̄e and νµ + ν̄µ fluxes at SK, shown
in comparison to measurements by Frejus [19], AMANDA-II [20, 21], and IceCube [22, 24, 23]. The
HKKM11 [16] model predictions are also shown in solid (with oscillation) and dashed (without oscillation)
lines.

A study of the time correlation between the atmospheric neutrino flux and the solar magnetic
activity cycle was performed, where the solar activity was assumed to be correlated with the neutron
flux at ground level. The type of correlation between the neutrino and neutron flux predicted by the
HKKM group was calculated to have a relatively minor effect on most of the Super-Kamiokande
data, but by searching over two solar maxima using approximately 14 years of data, a slight pref-
erence for such a correlation was seen at the 1.1 σ level. This correlation is shown in Fig. 6.

By separate examination of several short periods (not included in the long-term analysis due
to lack of a theoretical prediction) corresponding to especially strong solar activity, from across
the SK operational period for a total exposure of 7.1 days, an indication for some decrease in the
atmospheric neutrino flux was seen at the 2.4 σ level.

3. Summary and Future

These direct measurements of the atmospheric neutrino flux tested the theoretical models with
improved precision, and searched for several new physical effects not previously measured. While
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Figure 2: The measured energy spectra of the atmospheric νe + ν̄e and νµ + ν̄µ fluxes at SK, divided by the
predictions from the HKKM11 flux model. The ratios of several other flux models to the HKKM11 model
are also shown.
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Figure 3: A subset of the single-ring e-like and µ-like neutrino induced events in the SK-I to SK-IV data
(points) and MC (boxes), optimized to show the east-west asymmetry by selecting events with reconstructed
energy 0.4 < Erec < 3.0 GeV and incoming angle −0.6 < cos(zenith)< 0.6.

only one new measurement reached the 5 σ discovery level, even those with relatively low sig-
nificance are interesting indications that suggest further study by the next generation of neutrino
detectors. Our measurements are in general consistent with the current generation flux models,
which gives confidence in our understanding and modeling of the atmospheric neutrino flux.

In future, combining our measurements with those from other current generation neutrino de-
tectors, which are sensitive at distinct but overlapping energy regions, even more accurate data
may be obtained. For example, constraints given by the improved precision of our energy spectra
measurement combined with other measurements at higher energies can help to accurately deter-
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Figure 4: The A parameter (described in the text) for single-ring e-like and µ-like neutrino induced events
in the SK-I to SK-IV data (points) and MC (boxes).
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Figure 5: The B parameter (described in the text) for single-ring e-like and µ-like neutrino induced events
in the SK-I to SK-IV data (points) and MC (boxes).
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Figure 6: Events from four SK neutrino data samples, simultaneously fit against the predicted form of a
solar activity correlation according to the HKKM model, where "Climax NM parameter" is a parameter
based on the neutron count at various monitor stations around the Earth. Although hard to see by eye, the
predicted form of the function differs depending on the data sample.

mine the astrophysical neutrino spectra. In general, further improvements to the atmospheric flux
measurements could also provide feedback to the flux simulations, and further a better systematic
understanding of the atmospheric neutrino flux as both a background and a signal source.
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