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1. Introduction

The determination of the mass composition of ultra-high-energy cosmic rays (UHECRS) is
one of the most challenging problems for extensive air-shower (EAS) experiments; for a recent
review, see [1]. Parameters of hadronic interactions at these energies are only loosely constrained
by accelerator data and thus the evolution of the behavior of EAS properties with energy can in
general be interpreted in terms of both changes of the primary mass and/or of the characteristics
of the particle interactions. One way to try to resolve this ambiguity is to find shower parameters
or their combinations that rely on more general aspects of EAS physics and are thus relatively
insensitive to the uncertainties in the properties of the hadronic interactions.

In particular, in [2] it was proposed to use the correlation between the depth of the shower
maximum Xy,ax and the number of muons Ny, of the EAS for the determination of the degree of
purity of the beam, i.e., whether it is composed of several or just one nuclear species. In the
present work we adapt this idea to the conditions of the Pierre Auger Observatory [3]. In place of
Ny we use the total signal in water-Cherenkov detectors at 1000 meters from the core, S(1000),
a substantial fraction of which is due to muons: from 40% to 90% for zenith angles from 20°
to 60° [4]. We show that the correlation (Xmax, S(1000)) for pure primary beams for all current
interaction models turns out to be close to zero or positive, while for well-mixed compositions with
a large spread of masses it becomes negative (see [2]). Thus the correlation coefficient can be used
to determine the dispersion, ¢(InA), of primary masses, given by 6(InA) = 1/ (In?A) — (InA)2
where (InA) =Y, f;InA; and (In?A) =Y, f;In? A; with f; being the relative fraction of mass A;.

An estimation of the degree of purity of the primary beam in the energy range Ig(E/eV) =
18.5—19.0 is of particular interest as a test of the ‘dip’ scenario [5]. In this scenario the break
in the energy spectrum at around Ig(E /eV) = 18.7 results from electron-positron pair-production
by extragalactic protons interacting with the cosmic microwave background. The ‘dip’ is well
pronounced only if the fraction of heavier nuclei at the acceleration site is < 15% (see [6] and
references therein).

2. Data and simulations

The analysis is based on the same hybrid events as used in [7] recorded by both fluorescence
(FD) and surface detectors (SD) of the Pierre Auger Observatory during the period from 01.01.2004
to 31.12.2012. The procedure of data selection, described in [7], guarantees that only high quality
events are included in the analysis and that the mass composition of the selected sample is unbiased.
The use of the signal in ground stations requires an additional application of the fiducial trigger
cut [8] (the station with the highest signal should have at least 5 working neighbour stations), and
exclusion of events with stations having saturated signal traces. The final data set for energies
Ig(E/eV) = 18.5—19.0 and zenith angles 6 = 0° — 65° contains 1376 events.

Monte-Carlo (MC) simulations are performed with CORSIKA [9] for high-energy interaction
models QGSJetll-04 [10], Epos-LHC[11] and Sibyll 2.1 [12]. FLUKA [13] is used to treat low
energy interactions. For CORSIKA events, full detector simulation and reconstruction procedures
with the Auger Offline software [14] are performed, and the event selection follows that applied to
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Figure 1: Scatter plot of X5, vs $*(1000) for protons and iron of Epos-LHC from full detector simulations
(left) and for data (right) for Ig(E /eV) = 18.5 — 19.0.

data. After selection, the proton samples for all models contain ~ 10* showers; for heavier nuclei
the samples vary from 5 - 103 to 10* showers.

Since S(1000) and X,y of an air shower depend on the energy and, in the case of §(1000), also
on the zenith angle, we scale S(1000) and Xpax to a reference energy and zenith angle. In this way,
a decorrelation between the observables from combining different energies and zenith angles in the
data set is avoided. We scale S(1000) to 38° and 10 EeV using the calibration curves from [15]
and Xpnax to 10 EeV using an elongation rate of 58 gcm™2/decade. These scaled quantities will

be marked with an asterisk: X, .,

$*(1000). Fig. 1 (right panel) shows the correlation between
Xax and S*(1000) observed in data. Also shown, for illustration purposes, are the simulations for
proton and iron primaries with Epos-LHC.

3. Method and results

As a measure of the correlation between X/, and $*(1000) we take the ranking coefficient

rg introduced by Gideon and Hollister in [16]. All events are ranked in both X . and S*(1000),
and the measured values of these observables are replaced by ranks for calculating the correlation.
Further, the values of ranks are not used directly to calculate rg, but rather the general statistical

dependence between X,

and S*(1000) is estimated counting numbers of events with ranks devi-
ating from the expectations for perfect correlation and anti-correlation. With respect to the classical
Pearson and Spearman coefficients, rg provides a more robust estimate of the correlation [16, 17].
In particular, rg is less sensitive to the removal of the most influential events or to outliers. We
also note that the difference between correlation coefficients found in data and MC simulations for
pure beams gets larger using Pearson and Spearman coefficients (or a number of other correlation
coefficients considered in [17]) compared to using rg so that the choice of rg can be also viewed
as conservative. The statistical uncertainty of rg is determined using dedicated simulations and for
the sample of size N it is Oy (rG) ~ 0.9/v/N.

In Table 1 we present the rg values for data and for the simulations for pure beams. Compared
to data, where the correlation is significantly negative rg (X4, $*(1000)) = —0.125+0.024 (stat),

the smallest difference is found for Epos-LHC protons and it is around 50,. Pre-LHC versions
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Table 1: rg(X} .« S(1000)) for data and for MC simulations of pure beams (preliminary). Statistical

max?

uncertainties on the MC values are Oy, = 0.01.

data —0.125+0.024 (stat)
Epos-LHC  QGSJetll-04  Sibyll 2.1
P 0.00 0.08 0.07
He 0.08 0.15 0.15
(0] 0.09 0.15 0.14
Fe 0.08 0.12 0.12
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Figure 2: Dependence of the correlation coefficients rg on o (InA) for Epos-LHC (left), QGSJetII-04 (right).
Each MC point corresponds to a mixture with different fractions of protons, helium, oxygen and iron, the
relative fractions change with 0.1 steps (4 points for pure beams are grouped at 6(InA) = 0). The shaded
band shows the 10y interval for data. Vertical dotted lines indicate the range of 6(InA) in simulations
compatible with the observed correlation in data.

of Epos and QGSJetll produce values of correlations similar to Epos-LHC and QGSJetll-04. The
differences between data and simulations are larger for pure beams other than protons. Using
Pearson and Spearman coefficients one gets the same or slightly more positive values for pure
beams as with rg, and more negative correlation for data: r(Pearson) = —0.210 4 0.038 (stat);
r(Spearman) = —0.199 £ 0.027 (stat). This result shows that the composition in the considered
energy range is not pure but mixed.

Fig. 2 presents the dependence of the correlation rg(X;,., S*(1000)) on the dispersion of
primary masses o(InA). Each MC point in this plot represents a mixture containing different
fractions of protons, helium, oxygen and iron. The relative fractions f; of each species change with
0.1 steps between different mixtures. There are four points corresponding to beams of pure p, He,
0O, and Fe, grouped on the left side at 6(InA) = 0; of these, the proton beam has the smallest rg (cf.
Table 1). The maximum possible value of o(InA) ~ 2.01 corresponds to the 0.5 p—0.5 Fe mix.

The value of the correlation in data, indicated with the shaded band, is compatible with the
MC samples with dispersions of primary masses o(InA) 2 1. The conclusions on ¢(InA) are
similar for all models considered (for Sibyll 2.1 one gets almost identical results to QGSJetII-04,
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cf. Table 1) and thus is weakly sensitive to the uncertainties in the description of the high-energy
hadronic interactions.

The robustness of the presented approach makes it suitable for testing the self-consistency of
the hadronic interaction models. For example, using the fractions of primary nuclei obtained from
the fits of Auger Xpax distributions [18] for QGSJetII-04 and Sibyll 2.1, which in the 1g(E /eV) =
18.5—19.0 energy range are close to 0.5 p—0.5He (6 (InA) =~ 0.7), one gets rg ~ 0.07 —0.09. The
incompatibility of this value with the results of the present correlation analysis may be an indication
of deficiencies in these two interaction models. The composition found in [18] from Xp,ax fits with
Epos-LHC is close to ~ 0.35p — 0.30He — 0.350 mix (o(InA) ~ 1.17), and the corresponding
correlation rg = —0.084 is within 20 from the rg value in data.

4. Uncertainties

A number of standard tests were performed for estimation of the robustness of the obtained
results. These checks include analysis of data recorded in various time periods and by different
FD telescopes, separation of data in several angular ranges, and study of rg in smaller energy bins.
Results were consistent in all cases.

The ranking correlation coefficients are invariant with respect to any transformations not af-
fecting ranks of the events. Thus rg is insensitive to the systematic effects on X7, or S*(1000) that
might lead to shift or multiplication of these observables by a constant value. In particular we have
checked that the recent changes in Auger energy and X, scales [19, 7] do not change the observed
correlation. The same insensitivity of rg was observed with respect to the application of various
FD selection cuts which have been used in our publications from 2010 [20] until 2014 [7]. Finally,
(up to 10 gem™2) and
S*(1000) (up to 10%) and this changed rg by ~ 0.01. We take that value as a conservative estimate

we introduced arbitrary energy and zenith angle dependent biases in X,
of the systematic error on rg.

We checked whether moderate changes of hadronic interaction parameters could make the
value of rg predicted for a pure proton composition consistent with observations. Using the ap-
proach described in [21] we performed simulations with Epos-LHC modifying the cross-section,
multiplicity, elasticity and pion charge ratio in proton —air interactions by a factor fj9 = 1.5, i.e.
increasing them by a factor linearly growing with IgE from 1.0 at 10'> eV to 1.5 at 10! eV with
respect to the nominal values [21]. CONEX [22] with 3D option was used for approximate estima-
tion of the signal in Auger stations at 1000 meters from the core. It turned out that rg is practically
insensitive to the modifications of these interaction parameters decreasing only by Arg < 0.03. The
change in rg due the increase of cross-section, still being small compared to the difference between
data and pure proton expectations, is found to be zenith angle dependent and it would also lead to
zenith angle dependent (and thus contradictory) conclusions on ¢(InA). Such a scenario is con-
strained additionally by other Auger findings (e.g. regarding the proton-air cross section derived
forlg(E/eV) = 17.8 — 18.5 [23, 24]), making it implausible as an explanation of our observations.

A possible under-production of muons by the current interaction models [25, 26, 27] could lead

to changes in the ordering of events in the (X}, S*(1000)) plane due to the presence of events with

ax:?

largely varying muon fractions of $*(1000). We performed a number of studies using CORSIKA
showers and showers fully reconstructed with Offline with the numbers of muons increased by the
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factors ranging from 1.1 to 1.9 and we have found that for the muon scaling by a factor ~ 1.3, as
suggested by data for Epos-LHC [25, 26], the rg value decreseas by < 0.03.

5. Summary

The observed correlation rg (X, $*(1000)) between depth of shower maximum and total
signal at 1000 meters from the core differs significantly from the correlations for any pure beam
for simulations with Epos-LHC, QGSJetIl-04 and Sibyll 2.1. The result is invariant with respect to
additive and multiplicative scale transformations of the two variables and to any other transforma-
tions of X, and S(1000) which leave ranks of events unchanged, and hence is robust against many
possible experimental systematic uncertainties. Several modifications of hadronic interactions were
studied. The conclusions remain robust also with regard to hadronic uncertainties, unless hadronic
interactions at these energies behave very differently than in conventional, LHC-tuned event gen-
erators. The results are compatible with a mixed primary composition around the ‘ankle’ with the

dispersion of masses 1.0 < o(InA) < 1.7 and question the ‘dip’ scenario.
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