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Diffusive cosmic ray acceleration at relativistic
shock waves
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The analytical theory of diffusive cosmic ray acceleration at parallel stationary shock waves with
magnetostatic turbulence is generalized to arbitrary shock speeds Vs = β1c, including in particu-
lar relativistic speeds. This is achieved by applying the diffusion approximation to the relevant
Fokker-Planck particle transport equation formulated in the mixed comoving coordinate system.
In this coordinate system the particle’s momentum coordinates p and µ = p‖/p are taken in the
rest frame of the streaming plasma, whereas the time and space coordinates are taken in the ob-
server’s system. For magnetostatic slab turbulence the diffusion-convection transport equation
for the isotropic (in the rest frame of the streaming plasma) part of the particle’s phase space
density is derived. For a step-wise shock velocity profile the steady-state diffusion-convection
transport equation is solved. For a symmetric pitch-angle scattering Fokker-Planck coefficient
Dµµ(−µ) = Dµµ(µ) the steady-state solution is independent of the microphysical scattering de-
tails. For nonrelativistic mono-momentum particle injection at the shock the steady-state differ-
ential number density of accelerated particles is a Lorentzian-type distribution function which at
large momenta approaches a power law distribution function N(p ≥ pc) ∝ p−ξ with the spectral

index ξ (β1) = 1+ [3/(Γ1

√
r2−β 2

1 − 1)(1+ 3β 2
1 )]. For nonrelativistic (β1 � 1) shock speeds

this spectral index agrees with the known result ξ (β1� 1) ' (r+2)/(r−1), whereas for ultra-
relativistic (Γ1� 1) shock speeds the spectral index value is close to unity.
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1. Introduction

Diffusive first-order Fermi acceleration at nonrelativistic shock fronts has been regarded as a
prime candidate for particle acceleration in astrophysics[1, 2]. Diffusive shock acceleration should
also operate efficiently at magnetized shock waves with relativistic speeds. Such relativistic shocks
form during the interaction of relativistic supersonic and super-Alfvenic outflows with the ambi-
ent ionized interstellar or intergalactic medium producing anisotropic counterstream plasma dis-
tribution functions due to shock-reflected charged particles in the upstream medium. Relativistic
outflows are a direct consequence of violent explosive events such as in gamma-ray burst sources,
but also occur as highly collimated pulsar winds and jets of active galactic nuclei with initial bulk
Lorentz factors Γ0 = (1− (V0/c)2)−1/2 ' 400.

The transport and acceleration of energetic particles in the partially turbulent cosmic magnetic
fields associated with shocks is described using the Fokker-Planck equation for the particle distri-
bution function[3]. The diffusion approximation for the particle density in the rest frame of the
fluid is a well-known simplified form of the Fokker-Planck equation, which results when turbu-
lent pitch-angle scattering is strong enough to ensure that the scale of the particle density variation
is signicantly greater than the particle mean free path. While for nonrelativistic shock waves the
analytic theory of diffusive shock acceleration is well developed[4, 5, 6, 7], for relativistic shock
speeds such an analytical theory does not exist sofar even for parallel shock waves, although the
underlying Fokker-Planck transport equation (see Eq. (2.1) below) for the particle dynamics has
already been derived[8, 9] some years ago. Here we develop the analytical study of cosmic ray ac-
celeration in parallel relativistic magnetized shock waves employing the diffusion approximation
in the upstream and downstream regions of the shock wave. The development runs much in parallel
with the existing work on nonrelativistic shocks.

2. Relevant transport equations

Magnetized space plasmas such as the interstellar medium harbour low-frequency linear (δB�
B0) transverse MHD waves (such as shear Alfven and magnetosonic plasma waves) with disper-
sion relations ω2

R = V 2
A k2
‖ and ω2

R = V 2
A k2, respectively, in the rest frame of the moving plasma.

Faraday
′
s induction law then indicates for MHD waves that the strength of turbulent electric

fields δE = (VA/c)δB� δB is much smaller than the strength of turbulent magnetic fields. The
ordering B0 � δB � δE corresponds to the derivation of cosmic ray transport equations for
< f > (~X , p,µ,φ , t)→ f0(~X , p,µ, t)→ F(~X , p, t) from the collisionfree Boltzmann equation for
the full phase space distribution < f > (~X , p,µ,φ , t) to the Fokker-Planck equation for its gy-
rotropic part f0(~X , p,µ, t), and to the diffusion-convection transport equation for its isotropic part
F(~X , p, t), respectively.

When considering the acceleration of relativistic cosmic rays at relativistic shocks in the ob-
server’s frame of reference (laboratory frame), both the particles and the shock have relativistic
speed. Consequently, the cosmic ray particles have a highly anisotropic gyrotropic velocity distri-
bution due to the relativistic flow of the upstream and downstream medium in this laboratory frame.
Therefore, most importantly, in order to employ the diffusion approximation, one has to study the
cosmic ray dynamics instead in the mixed comoving coordinate system where the momentum co-
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ordinates of the cosmic rays p and µ = p‖/p are taken in the rest frame of the streaming plasma,
and the time t∗ and space coordinates z∗ are taken in the laboratory (=observer) system. Chosing
this mixed phase space coordinate system then automatically removes the strong particle momen-
tum or velocity anisotropy due to the relativistic moving media. And we are allowed to employ the
diffusion approximation to the gyrotropic cosmic ray distribution function: i.e. we approximate it
by its isotropic part (in the rest frame of the flow!) and a small anisotropy.

Dropping from now on the (z∗, t∗)-notation (with the understanding that they have to be taken
in the laboratory frame), the Larmor-phase averaged Fokker-Planck transport equation in a medium
with magnetostatic turbulence only, propagating with the stationary bulk speed ~U = U(z)~ez with
Γ = [1− (U2/c2)]−1/2 aligned along the uniform magnetic field (~B0 = B0~ez) direction is given
by[8, 9]

Γ

[
1+

Uvµ

c2

]
∂ f0

∂ t
+Γ [U + vµ]

∂ f0

∂ z
−α(z)

(
µ +

U
v

)[
µ p

∂ f0

∂ p
+(1−µ

2)
∂ f0

∂ µ

]
+R f0−S(~X , p, t)

=
∂

∂ µ

[
Dµµ

∂ f0

∂ µ

]
, (2.1)

where α(z) and R f0 denote the rate of adiabatic deceleration/acceleration in relativistic flows

α(z) =
c2

U(z)
dΓ(z)

dz
=

dU
dz

Γ
3 =

d(UΓ)

dz
, R f0 =−p−2 ∂

∂ p

[
p2 ṗloss f0

]
+

f0

Tc
(2.2)

and continuous ( ṗloss) and catastrophic (Tc) momentum losses of cosmic ray particles, respectively.
For spatially constant flows the rate of adiabatic deceleration/acceleration (2.2) vanishes, and

the remaining flow velocity (U) dependent terms in Eq. (2.1) simply result from the Lorentz
transformation of special relativity of the comoving-frame position-time coordinates (z, t) to the
laboratory-frame position-time coordinates (z∗, t∗). However, for spatially varying flow speeds
U(z) special relativity no longer applies and has to be replaced by the transformation laws from
general relativity. As noted[9, 10] these introduce connection coefficients or Christoffel symbols
of the first kind. In a flat Euclidean space-time metric the terms proportional to α(z) in Eq. (2.1)
are exactly these connection coefficients.

Due to the rapid pitch angle scattering the gyrotropic particle distribution function f0(~X , p,µ, t)
adjusts very quickly to a distribution function which is close to the isotropic distribution F(~X ,z, p, t)
in the rest frame of the moving background plasma, i.e.

f0(~X , p,µ, t) = F(~X , p, t)+ g(~X , p,µ, t), F(~X , p, t)≡ 1
2

∫ 1

−1
dµ f0(~X , p,µ, t), (2.3)

with |g|�F and
∫ 1
−1 dµ g(~X , p,µ, t)= 0. Inserting the ansatz (2.3) into the Fokker-Planck equation

(2.1) and averaging this equation over µ , using that Dµµ(µ = ±1) = 0, leads to the diffusion-
convection transport equation

Γ

[
∂F
∂ t

+U
∂F
∂ z

]
− α

3
p

∂F
∂ p

+RF−S(~X , p, t)+
v
2

Γ

(
∂

∂ z
+

U
c2

∂

∂ t

)∫ 1

−1
dµ µg

−αU
2v

[
p

∂

∂ p
+2
]∫ 1

−1
dµ µg− α

2

[
p

∂

∂ p
+3
]∫ 1

−1
dµ µ

2g = 0, (2.4)

3



P
o
S
(
I
C
R
C
2
0
1
5
)
4
6
0

Acceleration at relativistic shocks Reinhard Schlickeiser

involving the first and second moment of the anisotropy. Subtracting Eq. (2.4) from the Fokker-
Planck equation (2.1) provides a long and involved equation for the anisotropy g, which we ap-
proximate to leading order by

Γvµ
∂F
∂ z
' ∂

∂ µ

[
Dµµ

∂g
∂ µ

]
, (2.5)

where we neglect the time derivate of F as compared to the spatial gradient of F , i.e. (U/c2)(∂F/∂ t)�
(∂F/∂ z). Integrating Eq. (2.5) twice provides for the cosmic ray anisotropy

g(~X , p,µ, t)' Γv
4

[∫ 1

−1
dµ

(1−µ)(1−µ2)

Dµµ(µ)
−2

∫
µ

−1
dx

(1− x2)

Dµµ(x)

]
∂F
∂ z

, (2.6)

which allows the calculation of the moments needed in the diffusion-convection transport equation
(2.4) as

∫ 1

−1
dµ µg =−ΓvK0

4
∂F
∂ z

,
∫ 1

−1
dµ µ

2g =−ΓvK1

6
∂F
∂ z

, Kn =
∫ 1

−1
dµ

µn(1−µ2)2

Dµµ(µ)
(2.7)

With these moments the diffusion-convection transport equation (2.4) becomes

Γ
∂F
∂ t

+
∂

∂ z

[
Γ

(
UF−Γκzz

∂F
∂ z

)]
+

1
p2

∂

∂ p

[
p2

κpzΓ
∂F
∂ z
− α p3F

3

]
+RF = S(~X , p, t) (2.8)

with the two diffusion coefficients

κzz =
v2K0

8
, κpz = κzp = αKpz, Kpz =

vp
12

(
K1 +

3U
2v

K0

)
(2.9)

Eq. (2.8) is the diffusion-convection transport equation of cosmic rays in aligned parallel flows of
arbitrary speed containing magnetostatic slab turbulence with the cosmic ray phase space coordi-
nates taken in the mixed comoving coordinate system. It is particularly appropriate to investigate
cosmic ray particle acceleration in parallel relativistic flows.

In the limit of nonrelativistic flows U(z)� c so that Γ' 1. the transport equation (2.8) reduces
to

∂F
∂ t

+
∂

∂ z

[
UF−κzz

∂F
∂ z

]
+

1
p2

∂

∂ p

[
p2

κpz
∂F
∂ z
− α p3F

3

]
+RF = S(~X , p, t), (2.10)

which differs from the transport theory used in earlier nonrelativistic diffusive shock acceleration
theory by the additional third last term on the left-hand side involving κpz, which results from our
correct handling of the connection coefficients in Eq. (2.1). This additional term provides a major
modification of the resulting steady-state differential momentum spectrum of accelerated particles
in the nonrelativistic flow limit at nonrelativistic particles momenta: instead of a power law dis-
tribution of accelerated particles at the shock a Lorentzian distribution function results, which at
large momenta then approaches the power law distribution inferred in earlier acceleration theories
for nonrelativistic shock speeds. The modification to the Lorentzian at low particle momenta is
due to the κpz-term in Eq. (2.8) because κpz/p depends on the cosmic ray particle velocity and
therefore is not constant at nonrelativistic particle momenta.
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3. Steady-state particle acceleration at relativistic shock waves

We adopt particle injection S(~X , p, t) = S(p)δ (z) at the position of the shock only, and adopt
the step-like shock profile U(z) =−U1 =const. for 0 < z≤∞ (upstream) and U(z) =−U2 =const.
for −∞ < z ≤ 0 (downstream) with U2 <U1, where we chose the rest frame of the shock wave as
laboratory frame. In this case the rate of adiabatic acceleration (2.2)

α = α0δ (z), α0 =−(U1Γ1−U2Γ2) (3.1)

is non-zero only at the position of the shock. In the steady-state case with no losses (RF = 0) the
diffusion-convection transport equation (2.8) in the rest frame of the shock wave then reduces to

∂

∂ z

[
Γ

(
UF−Γκzz

∂F
∂ z

)]
+

α0δ (z)
p2

∂

∂ p

[
p2KpzΓ

∂F
∂ z
− p3F

3

]
= S(p)δ (z = 0) (3.2)

For the up- and down-stream regions we obtain the solutions for spataially constant flow velocities
and diffusion coefficients

F1(z > 0, p) = F0(p)exp
[
− U1z

Γ1κzz,1

]
, F2(z < 0, p) = F0(p) (3.3)

The particle momentum spectrum F0(p) of accelerated particles at the position of the shock is
obtained by integrating the transport equation (2.9) from z =−η to z = η and considering the limit
η → 0. This provides the continuity condition for the cosmic ray streaming density at the shock.
For a monomomentum injection spectrum S(p) = S0δ (p− p0) we obtain[11]

F0(p≥ p0) =
3S0

U1Γ1−U2Γ2

p2
0

p2T (p)
e−ψI(p,p0) (3.4)

with the integral

I(p, p0) =
∫ mc

p0

mc
p

dy

y
[
1+β1

√
1+ y2[ZR+3β1

√
1+ y2]

] (3.5)

and

ψ =
3√

r2−β 2
1

1−β 2
1
−1

=
3

Γ1

√
r2−β 2

1 −1
(3.6)

in terms of shock wave flow compression ratio r = U1/U2 = β1/β2, the charge sign Z = q/|q| of
the cosmic ray particle and the helicity-dependent function

R(s,σ+,σ−,Hc) =
(2− s)(4− s)
(3− s)(5− s)

[σ++σ−+Hc(σ+−σ−)] (3.7)

The function R arises for asymmetric pitch-angle scattering Fokker-Planck coefficients when we
consider slab Alfven waves only with power-law type wave intensities I ∝ k−s

‖ and wavenumber-
independent values of the cross helicity Hc and the magnetic helicities σ± of forward and backward
moving Alfven waves (isospectral turbulence).
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For the differential number density of accelerated particles N(z, p) = 4π p2F(z, p) we derive

N2(z < 0, p) = N0(z = 0, p≥ p0) = 4π p2F(p≥ p0) =
4πS0ψ

U2Γ2

p2
0

T (p)
e−ψI(p,p0),

N1(z > 0, p) = N0(z = 0, p≥ p0)exp
[
− U1z

Γ1κzz,1

]
(3.8)

4. Results and discussion

For a symmetric pitch-angle Fokker-Planck coefficients (R = 0) the integral (3.5) reduces to

I(R = 0) =
1

2(1+3β 2
1 )

ln
1+ p2

p2
c

1+ p2
0

p2
c

, pc(β1) =

√
3β 2

1

1+3β 2
1

mc, (4.1)

so that the differential number density at the shock (3.8) becomes the Lorentzian-type (or kappa)
distribution function

N0(p≥ p0) = A0 p
[

1+(
p
pc
)2
]−ρ

, A0 =
4πS0ψ p2

0

U2Γ2(1+3β 2
1 )p2

c

[
1+

p2
0

p2
c

]ρ−1

ρ =
ψ

2(1+3β 2
1 )

+1, (4.2)

illustrated in Fig. 1.

Figure 1: Differential number density of accelerated particles at the shock as a function of p/pc in the case
R = 0 for the adopted spectral index value ρ = 2 and injection momentum p0/pc = 10−3.

For particle momenta p0 ≤ p≤ pc the Lorentzian distribution (4.2) increases linearly with mo-
mentum, N0(p0 ≤ p≤ pc)' A0 p, whereas for large momenta p≥ pc it approaches the decreasing
power law distribution

N0(p≥ pc)' A0 pc

(
p
pc

)−ξ

, ξ = 2ρ−1 = 1+
ψ

1+3β 2
1

(4.3)
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Notice that for relativistic (Γ1� 1) shock speeds the characteristic momentum pc coincides with
mc, so that in this case no decreasing power law distributions for nonrelativistic shock accelerated
particles result.

For nonrelativistic shock velocities β1� 1, the Lorentzian distribution function (4.2) reads

N0(p≥ p0) = A0 p
[

1+(
p√

3β1mc
)2
]− 2r+1

2(r−1)

(4.4)

At momenta greater than the nonrelativistic characteristic momentum pnr
c =
√

3mU1 this function

approaches the decreasing power law distribution N0(p ≥ pnr
c ) ' A0 pnr

c

(
p
pc

)−ξ0
with the spectral

index ξ0 = (r+2)/(r−1) agreeing with the standard result for nonrelativistic shocks.
For relativistic shock velocities with β1 ' 1 and Γ1 � 1, we have to distinguish between

particle injection at nonrelativistic (p0 � mc) and at relativistic (p0 � mc) momenta. In the first
case the Lorentzian distribution function (4.2) reads

N0(p≥ p0) = A0 p
[
1+(

p
mc

)2
]−1− 3

8(Γ1
√

r2−1−1) (4.5)

At nonrelativistic particle momenta this function increases linearly in momentum. At relativistic
particle momenta it approaches the decreasing power law distribution

N0(p≥ mc)' A0mc
( p

mc

)−ξ

, ξ = 1+
3

4(Γ1
√

r2−1−1)
(4.6)

If cosmic rays are injected at relativistic momenta the power law behavior (4.6) holds throughout
for p≥ p0� mc

In the case of an ultrarelativistic hydrodynamical shock Γ1� 1 and a relativistic downstream
medium with adiabatic index 4/3, the flow compression ratio is r' 3 (Blandford and McKee 1976),
so that the power law spectral index (4.6) becomes

ξ = 1+
3[√

8Γ2
1 +1−1

][
4− 3

Γ2
1

] ' 1+
3

8
√

2Γ1
, (4.7)

illustrated in Fig. 2 for relativistic shocks with Γ1 ≥ 2.
Obviously relativistic shocks accelerate cosmic ray particles very efficiently in the case of

negligible momentum losses to power law distribution functions at relativistic momenta with power
law spectral index values close to unity due to the dominating Γ−1 dependence of ξ −1.

Our result of efficient cosmic ray acceleration with flat power-law spectral indices ξ ' 1 for
ultrarelativistic shocks disagrees strongly with the earlier established universal spectral index value
ξ ∈ [2.25− 2.30] from the eigenfunction and Monte Carlo simulation studies[13]. As possible
explanation for this difference we recall that our analytical solution is based on two continuity
conditions at the shock. These two continuity conditions are needed as our steady-state diffusion-
convection transport equation (3.2) is a second-order differential equation in the position coordinate
z. While the continuity condition for the particle phase density at the shock is also used in the
eigenfunction solution method, the continuity condition for the flux of particles is not used in that
method as the Fokker-Planck transport equation (2.1) is a first-order differential equation in the

7
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Figure 2: Power law spectral index of relativistic particles accelerated at an ultrarelativistic shock for the
case R = 0 as a function of the shock Lorentz factor Γ1.

position coordinate z. It is clear that the use of different continuity conditions results in different
results.

Finally we emphasize that the isotropic differential number densities (3.8) and (4.2) - (4.6)
hold in the mixed comoving coordinate system. Transforming the momentum coordinate p to the
observer’s frame yields highly anisotropic particle number densities in the case of relativistic shock
speeds.
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