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The Cosmic Ray anisotropy is a key element in the quest to fiedtigin of the enigmatic par-
ticles. A well known problem is that, although most of theeliksources are in the Inner Galaxy,
the direction from which the lowest energy particles (Iésstabout 1 PeV) come is largely from
the Outer Galaxy. We show that this can be understood takiogiccount a possible reflection of
charged particles by 'walls’ in the Interstellar Mediumaord as a temporary phenomenon after
the shock wave from the supernova explosion passed the. BHéitheffect is too subtle to be ex-
plained by an ordinary diffusion theory and becomes appavithin the frames of the non-local
relativistic transport theory, which involves concepsaf free motion velocity and path lengths
with probability distributions of non-exponential typekéan for a turbulent interstellar medium.
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1. Introduction

The problem of the nature of the sources of the observed CoRays (CR) is well known:
irregularities in the magnetic fields in the Interstellar dden (ISM) cause the direction of a CR
observed at Earth to bear little relation to the directiolita@ctual source, except for CR of very
high energies.

In a recent paper on the anisotropy problem [1] we analysedtbblem in detail using all
available data. The results confirm the well-known facts thare is a region at energies below
1 PeV which has a phase opposite to expectation and a markegelof the phase in the Right
Ascension (RA) plot starting from 1 PeV, where the amplitofi¢he anisotropy drops and then
starts to rise again.

Although it is possible to design an 'origin-model’ whichpdains the phenomena it seems
rather contrived. A fundamental question is the followicgn particles originated from a source
in a particular direction be observed at Earth as coming fileenopposite direction or generally
from any different direction? In particular, can the 'flowf jparticles from the Inner Galaxy give
an anisotropy pointing to the opposite direction, i.e. ® @uter Galaxy?

2. On the non-local CR-diffusion model

The transport of CR in the Galaxy is an extremely complex @seaependent on changeable
in space and time interstellar medium characteristics vhre known to us only in outline. This
is why we are forced to use more or less simplified models fecigtion of the process. The
standard diffusion model is a very crude approximation Wigives only qualitative estimates of
only some aspects of the process. Suffice it to say that thesdih model of CR propagation in
space violates the relativistic principle of velocity ltation. In spite of the conventional diffusivity
representatiorD [ vl, the diffusion equation relates to the limit case with thénite velocity
v and zero free path. For this reason, the diffusion model is incapable of desugi the CR
transport near boundary separating regions with diffepeoperties. Trajectories of this process
called the Brownian motion are nowhere differentiable Whitakes them infinitely far from their
physical prototypes (Fig. 1,a). In particular, the lengttaimy section of such trajectory between
two arbitrary points is infinitely long.

Because of their self-similarity however, the trajectsrietain these properties at all scales
including arbitrary small ones. Thus, despite the fact thatdiffusion equation can be derived
from the feasible random walk with a finite velocity by passag large scales, the way back is
closed: the small-scale behavior of the particles holdBiitsvnian pattern which looks here even
more unnatural than on large scales. For these reasondffttstoth model and their modifications
based on the diffusivity concept are not really in a positmgive proper particle path lengths and
their escape time distributions.

It is well known that already hydrodynamic turbulence degsithe Brownian motion status
of a reliable mathematical model, and one could only wonder long the diffusion ideas can live
in the theory of CR transport. Nevertheless, one can sagléissical diffusion model is gradually
losing its position. The process has been partially traceceviews [2, 3]. One can consider
these reviews as a relatively young branch of transportryheelativistic Brownian motion The
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Figure 1: Typical trajectories of random walk with constant velodity differenta. The 'front line’ corre-
sponds to the speed of light.

idea to get a relativistic analogue of the plain diffusioruaipn by generalising the link of the
latter with the quantum Schrddinger equation was firstzedlin article [4]. Applying the similar
transformation to the Dirac equation, the authors obtathedresult in the form of the telegraph
equation representing the relativistic Brownian motiothvaifinite velocity (limited by the speed of
light) and including exponentially distributed free patAskey item of the approach is replacement
of the non-relativistic first Fick law

j(x,t) = —D gradn(x,t), (2.1)

by its “relativistic” counterpart containing a retardedeogtor,
t
j(xt) = —/ Ve ¥/Pgradn(x,t — 1)dr, D =Iv/3. (2.2)
0

Combining it with the continuity equation yields the telegh equation derived for one-
dimensional transport problems half of century earlier [5]

on _d°n _0°n

E+GW_DW:S(X’t)’ (2.3)
whereS(xt) is a source term3(x,t) = 8(x)d(t) for instantaneous point source). More formal
mathematical generalization of classical Brownian motiorits relativistic counterpart is per-
formed by Dunkel and Hanggi [6].

However, this equation describes propagation of CRs thr@ugystem of mutually indepen-
dent scatterers, whereas real points of scattering arededuny magnetic field lines along which
the particles fly. This means that free path of CRs partidiesilsl be distributed rather according
to power type (similarly to other laws in turbulent mediaditto exponential one (the latter relates
to an ideal gas in the equilibrium state). For this reasaomyitjht hand side of eq. (2.3) is replaced
by some non-local (in space-time) operator, averaginget ewrbulent fluctuations (see [2]). As
a result, the exponential law changes to the power type Létyilalition p; (x) O x~9~1 with an
exponentx € (0,2] connected with the fractal dimension of the ISM. All thes@iovements have
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drastically changed the picture making it closer to a remtdport process (Fig. 1,b). One can
see now the front linex(= +wt), free paths being parallel to one of the lines and havingaen
lengths distributed according to the inverse power law. [Bfter is characterized by numerous

small segments intermitted by long ‘Lévy jumps’.

It is worth noting that in earlier articles on anomalouswhfbn [7, 8, 9, 10], CR propagation
was described in terms of instantaneous 'Lévy jumps’ ansl dinialysis was used in [11] to de-
termine the different scattering properties of the Innet @uter Galaxy. Perfecting this model,
we replaced instantaneous spatial jumps by straight lirigs avfinite velocity of motion along
them (that is replaced Levy jumps by Levy flights) [12]. Weided the corresponding integro-
differential equation and extracted from it the followingyenptotical 1D-version [12]

AN AN
Kﬁ_vd_x) +<E+V0_x) ]n(x,t)zsa(x,t), O<a<l1 (2.4)

whereS; (x,t) is a generalized source ten®,(x,t) = #ia) [0(x—vt) 4+ O(x+ vt)] for instanta-
neous point source).

0 o o\ [0 a\°
ngt(’t)—%Ka—va—x) +(E+Va_x> }n(x,t)zsa(x,t), l<a<? (2.5)

where(R) is the mean free path lengtty, a scale constant (see details in [2]).
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Figure2: Scattering diagram of random walks in a two-layer mediare=0.5 and 0.75 fox < 400 pc and
o = 1.75 forx > 400 pc).

3. Results of the calculations

Numerical results represented below are calculated by &Garlo method and they support
the analytical evaluation. Omitting calculation detailgg pass directly to a discussion of the
results.

We begin searching an answer to question if the inversioheoQR’s anisotropy (in the sense
formulated above) is generally possible with consideratid a one-dimensional process. The
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Figure 3: Bar charts for particles moving in positive (red) and negatblue) directions before (a) and after
(b) hitting the boundaryy = 0.75 forx < 400 anda = 1.75 forx > 400

continuity equation
an(x7t) _ _de(X7t)

ot ox

shows that in the stationary case, whgRr,t) = n(x), jx(x) doesn’'t depend orand consequently

has the same sign (positive to the right of the source andimegm the left). In other words, the
flux is directed from the local source. This conclusion isd/édr heterogeneous media too (if not,
the particles should be accumulated in some region and toegs will be time-dependent).

In case of a time-dependent source, the ordinary diffusiodehgives the similar result, be-
cause the diffusion equation is a parabolic one and has ne-s@utions which could reverse
concentration gradient. However, a more realistic telggequation (2.3) is hyperbolic, it demon-
strates such feature of the wave motion as the existenceaofitsplash and a retardation. But this
equation relates to a uniform medium when free paths amelistd according to exponential law.
The turbulent character is taken into account by its fraeti@ounterpart following from (2.4-2.5).

We have solved this equation both analytically and numbyi¢hy means of Monte Carlo
method). The latter is especially effective in case of pbesi passing through a boundary separating
two regions with different properties. As our calculatiatow, the fractional generalization also
reveals the appearance of a weak short-term current ioveedier the front flash. This weak
phenomenon becomes more significant near the boundary dretwe domains with essentially
different properties and long free paths in one of them @sfig whena < 1). Some preliminary
results obtained within the frames of one-dimensionalw#rd and backward) walk model, are
presented in Figs. 2-5.

The results are obtained for the case when a point shortgonece placed at the origin and
emits particles moving alongaxis. We observe the forward and backward currents andnatbiz
anisotropy in the usual way. The inversion of isotropy appealy when we combine a two-layer
medium with a finite velocity of motion. In this case, we rgalbserve negative isotropy after the
short thick front layer of particles passed by, which givelagh number of back-scattered particles
close to the boundary. It is remarkable that the inversioouofent is observed on the source side
near the boundary, when the front of the incident packetgelanough (Fig. 2). This phenomenon
can be interpreted as a stochastic reflection of the padket firom the dense medium.
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Figure 4: Left panel: The family of anisotropy time-dependeidge) for various values oér. Right panel:
Function—4(t) in the log-log scale. The observation point is to the leftled boundary (that is, in 1-
medium). Distances: source-obserRRet 200 pc and source-boundaay= 400 pc. Random free paths are
distributed according to a power law with exponeatin 1-medium and3 in 2-medium @ = 1.9; mean
path in 2-medium\, = 0.3 pc). First-particles front reaches the detector at the fwintt; = R/v than it
reaches boundary, dives into 2-medium, diffuses theréigigreturns through the boundary and occurs the
observer point after = [a+ (a— R)]/v. Label ‘Exp’ corresponds to the case of exponential distidn of
free path lengths.

0. I————————r . —— 0. |

: : R=200 pc a
: a=1.5 : R=300 pc ~
evece,, ; i
. . . PO
..... o, 0ee®’ ! (LI
w Samas o ° PYYTS ....
[ (U 1 ! . artane .
. v . K e
H L] e
0. QL eoosssseeeeesssmeneisemdi g, — 0. 01} = Al ey —
[e vv D E N :,v"', ..“..
v : $og, 1 ° - S - -
: ov},:. v i v,
o [24 S
0.001 L L PR | s s s PR 0.001 L L PR | L s s PR
10000 100000 10000 100000
t [yr] tlyr]

Figure 5. Left panel: Anisotropyd(t) for various values of mean path in the first layer ¢ = 1.5).
Right panel:d(t) for various detector positions in the first lay® i§ the source-detector distance). The
observation point is to the left of the boundary (that is, imé&dium). The source-boundary distance is
equal toa = 400 pc. Random free paths are distributed according to ampawenith exponentsr = 1.5 in
1-medium angB = 1.9 in 2-medium 3 = 1.9; mean path in 2-mediuvky, = 0.3 pc).

Calculated results of the time-dependent anisotropy asepted in Fig. 4 and 5 for different
values ofa and different detector positions. The source-boundaradi®a = 400 pc. Random
free paths are distributed according to the inverse powemldh exponenta. The ‘first-particles
front’ reaches the boundary, dives into the second mediiffusds there, partially returns through
the boundary and appears at the observer &ftar= (a+ (a— R))/v. In case ofR = 200 pc,
tfront =~ 1957 yr.
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4. Conclusion

We argue that the presence of local regions of reduced iffiusefficient (D) can seriously
perturb the directions from which CR arrive from a specificrse which generated CR for a
limited period. For example, a close-by region of reducedab ‘store” particles such that more
source-particles come from the anti-source direction thanreverse. The location of the Solar
System in the Local Bubble might satisfy this condition.

The numerical investigation undertaken in this work shdveg the anisotropy inversion phe-
nomenon can be explained theoretically, although one hteké&into account the following cir-
cumstances.

1. This phenomenon usually does not take place in the cadatmfrgry (time-independent)
transport.

2. The ordinary diffusion theory cannot catch this phenoondpecause it is not in a position
to describe the front splash: a diffusion packet is instagasly spread around all space, breaking
the relativistic principle.

3. The more advanced transport theory reveals the realgyai anisotropy inversion mech-
anism: the most auspicious conditions for the phenomenpeapafter the front splash passed
through the boundary of two domains in the direction of theerdense one.

Attempting to give a more clear explanation of the anisgtrowersion phenomenon, we
suggest to imagine what happens when a finite duration pdil$ight falls on a perpendicular
plane. If the latter is an absorber, the pulse is not refledtesticksin the absorber as the ordinary
diffusion predicts. If the plane is of a mirror type, then fhese is reflected with inverted form: the
growing front part (moving now in negative direction) is sgposed on the fading tail of the pulse
(moving yet in positive direction), so the sum may becomeatieg. This process is described by a
plane kinematics. In reality, the particles penetrateubhothe plane into small deep of the second
medium and most of them are finally reflected. This is a lititaribre complex process described
by the telegraph equation, so we meet some intermediate lmatseur calculation showed that the
phenomenon of anisotropy inversion continues to take place

Application of the above techniques to the case of the Solate®, i.e. estimating the ex-
pected anisotropy locally, is difficult for two reasons.

(i) The topography of the local ISM is not (yet) well known.
(ii) The time profile of the CR intensity from the various lbsaurces is similarly uncertain.

However, some progress can be made in a rather general wayce@ng (i) two major
features of the local ISM are apparent: the Local Bubble &ed_bcal Fluff. The Local Bubble
[13] is a cavity of the reduced density of the ISM around th&aE8ystem. It has an approximate
hourglass shape and its boundary towards the Outer Galakyé#ded at a distance of about 300 pc
from the Sun. The mean density inside the Bubble is about €9%. At larger distances the
density comes back to its mean ISM value of 0.5 énThe boundary between regions of low and
high ISM density can be regarded as 'the wall’ for CR populathe interiors of the Local Bubble.

However, the low ISM density inside the Bubble is not petfeciniform. It contains nu-
merous relatively small cloudlets with different sizesapbs, densities, temperatures and other
characteristics. At the present time the Solar System ®iiee of such cloudlets, usualy called
Local Interstellar Cloud or Local Fluff (LF) [14]. It has afmximate diameter of 10pc, density of
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0.1 cn2 and temperature of 600K. Measurements made by the Voyager-2 mission outside the
Solar System have found that LF is highly magnetized with amfeld of about 4-5uG [15]. It

is clear that due to its higher density and magnetic field tfiesibn inside the LF is slower than

in the surrounding Local Bubble. Thus, inspite of all the deficies in our knowledge of the ISM
topography it can be assumed that in the vicinity of the S8imtem there are conditions which
can create the inversion of the CR anisotropy.
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