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On the gravitational quantum states of helium atoms O.D. Dalkarov

1. Introduction

We consider a quite cold old neutron star surrounded by a cloud of cold helium gas. Helium
atoms in the gravitational field of the star are localized in long-lived quantum states, similar to the
states of neutrons and antihydrogen atoms in the gravitational field of the Earth [1, 2]. Those states
have already been studied theoretically. Experimental test of the existence of such states for anti-
hydrogen by methods of induction of resonance transitions between quantum levels in temporally
oscillating gradient magnetic field is planned [3].

In case of dealing with helium atoms near the neutron star’s surface neutron star’s own os-
cillating magnetic field can be used to observe gravitational states of atoms. The main effect that
makes these observations difficult is the thermal motion of helium atoms. Helium atoms were
chosen because the distance between gravitational levels of helium is larger than the same for hy-
drogen, that’s why the thermal motion’s effects are not so drastic for helium. It is shown in the
following paper that temperature about 0.4 K will make observation of spectral lines consistent
with gravitational transitions possible. Temperature about 0.4 K could not be achieved if a case of
weak anisotropy of cosmic microwave background is considered (TCMB ∼ 2.7 K)[4]. On the other
hand if we manage to register gravitational states’ spectral lines, we can state the existence of the
Universe’s areas with sufficiently lower temperatures (T � TCMB).

The following work becomes the work of significant importance due to the preparing study of
radiation with gigahertz frequencies [5].

2. Helium atom in a neutron star’s field

The behavior of helium atom near the neutron star’s surface is considered. The surface is
supposed to be an ideal one. Gravitational field of the neutron star is thought as linear with the
potential of atom near the star’s surface having the form V (z) = MHegz, where z is a height of the
atom above the mirror, g is a gravitational field intensity near the star’s surface.

Energies En and heights Zn of quantum gravitational states of helium atoms are (analogous to
neutrons’ states [1])

En = ε0λn, (2.1)

where ε0 =
3
√

M2
Heg2h̄2

2mHe
and Ai(−λn) = 0; Ai(x) - is an Airy function,

Zn = l0λn, (2.2)

where l0 = 3
√

h̄2

2MHemHeg , MHe - gravitational mass of helium atom, mHe - inertial mass of helium.
We consider the neutron star with the mass equal to mns = 1.4msolar and radius Rns = 6 km

(Rg/Rns = 0.69, Rg - Schwarzschild’s gravitational radius). For such a star the gravitational accel-
eration is

g =
Gmns

R2
ns
√

1−Rg/Rns
= 9.2614 ·1012(m/s2), (2.3)

G - the gravitational constant.
Numerical values of gravitational energies and heights:

ε0 = 91.920 µeV, (2.4)

l0 = 2.3744 ·10−1nm. (2.5)
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Figure 1: Possible parameters (mass mns and radius Rns) of neutron star at different temperatures for which
there is no thermal intermixing of the first and the second gravitational states of helium atom (filled area).

There are energies of the first five gravitational quantum states of helium atoms in Table 1.

n λn En, µeV
1 2.338 214.92
2 4.088 375.76
3 5.521 507.45
4 6.787 623.83
5 7.944 730.22

Table 1: The eigenvalues and gravitational energies of a helium atom in the neutron star’s gravitational field.

Helium atoms undergo thermal motion, but we need this motion not to intermix different grav-
itational states. This requirement is quite essential to observation of transitions between quantum
states in magnetic field of the star.

It is rational to consider transitions between the first (ground) and the second gravitational
quantum levels, because the distance between these levels is the largest. If the temperature is
lower than 0.4 K then the condition (E2−E1) > 2ET is satisfied (2ET/(E2−E1) = 0.6), where
ET = 3/2kT .

The essential requirement of the existence of the system neutron star - helium in the ground
gravitational state is the condition of smallness of atom size (diameter of the second Bohr’s orbit
2RB) compared with the characteristic height of the ground state of atom Z1 above the surface. The
mentioned condition (2RB/Z1 = 0.38) is true.

Neutron star’s magnetic field can be used to observe quantum gravitational states of helium
atom. It will be shown that spatially inhomogeneous temporally oscillating magnetic field will
induce transitions between gravitational states with nonzero probability.

In some approximation the magnetic field of neutron star can be considered as the magnetic
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Figure 2: Configuration of the magnetic field of the neutron star and the axis of its rotation in the chosen
frame of reference.

field of dipole:

~B =
3~n(~n, ~M)− ~M

r3 , (2.6)

where M - dipole magnetic moment, r - distance from the star’s center,~n - is a unit vector parallel
to~r.

We consider magnetic field in a frame of reference shown in FIG.2:

~B =
2M cos(wt)~ez−M sin(wt)~ex

r3 . (2.7)

where w - frequency of star’s rotation, related to the period: w = 2π/T .
If we consider a normal neutron star, then it can be assumed:

T = 0.1 s, (2.8)

B = 1013G. (2.9)

Inhomogeneous magnetic field couples the spin and the spatial degrees of freedom of the atom.
Influence of the magnetic field on the atom can be described by the operator: V̂f ield = −~̂µatom~B,
where µatom - magnetic moment of the atom. We assume helium to be in a 23S-state: 1s12s1. This
state is characterized by a full spin S = 1 and three possible spin projection quantum numbers:
Sz =−1,0,1.

Hamiltonian Ĥ0 describing helium atom in the gravitational field of the star without magnetic
field consists of two terms. One is the Hamiltonian of interatomic motion, Ĥrel; another one is the
Hamiltonian of center of mass motion, Ĥcm.

Ĥ0 = Ĥcm + Ĥrel,

Ĥcm =− h̄2

2MHe

d2

dz2 +MHegz,

Ĥrel =− h̄2

2me
(∇~R1

)2− h̄2

2me
(∇~R2

)2− Ze2

R1
− Ze2

R2
+ e2

|~R1−~R2| .
(2.10)
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Everywhere earlier ~Ri =~ri−~R,~ri - coordinate of i-th electron ei, ~R - coordinate of nuclei, z -
coordinate of center of mass.

Magnetic field’s influence causes the appearance of a new term in the Hamiltonian:

Ĥ = Ĥ0 +2µB~B(~̂se1 +~̂se2). (2.11)

For shown configuration of magnetic field in the frame of reference connected with helium
atom the operator of influence of magnetic field takes a form:

V̂ = µB
2M cos(wt)(σz1 +σz2)−M sin(wt)(σx1 +σx2)

(z+Rns)3 , (2.12)

where σi are the Pauli matrices, z is atom’s height above the neutron star’s surface.
We suppose that the magnetic moment is fixed along z-axis, i.e. atom’s state is described by a

spin projection quantum number Sz = 1, that does not change.
The estimation of the possibility of transition between the first and the second gravitational

states induced by the star’s magnetic field (transition frequency ν12 = w12/2π = 3.8892 ·1010 Hz)
is made.

The corresponding Schrödinger equation has a form:

− h̄
i

d
dt

Ψ = (Ĥ0 +V̂ )Ψ. (2.13)

The solution of the following equation is found in the form (using the two-state system model):

Ψ =C1(t)e−iw1t |1 >+C2(t)e−iw2t |2 >, (2.14)

where |1 >, |2 > - eigenvectors of the Hamiltonian Ĥ0 corresponding to the gravitational states 1
and 2 (|n >= Ai(z/l0−λn)/Nn ·ψ(R1,R2)χ

1, where Nn is a normalizing coefficient for the Airy
function Ai(z/l0−λn), ψ(R1,R2) is a space-dependent wave function of helium atom, χ is a spin
wave function).

The initial condition for our system is the following: at the initial moment of time atom is in
the ground gravitational state, C1(0) = 1, C2(0) = 0.

One can try to find the possibility of transition between gravitational quantum states using the
formalism of perturbation theory. In this case from the initial conditions one can find the "zero
approximation" for the coefficients: {

C(0)
1 = 1,

C(0)
2 = 0.

(2.15)

The full solution looks like the following:

Cn =C(0)
n +C(1)

n +C(2)
n + . . . . (2.16)

Keeping only the first two terms and using the condition w� w12, one can get the probability of
transition between the first and the second gravitational states |C2|2:

P =
W 2

12
(h̄w12)2 (1−2cos(wt)cos(w12t)+ cos2(wt)). (2.17)
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Figure 3: Average value of the transition probability as a function of time.

After averaging over time interval τ = π/w12, one will get (see FIG.3):

P =
W 2

12
(h̄w12)2 (1+ cos2(wt)), (2.18)

where matrix elements have the form: Wnk =< n|4µB
M

(z+Rns)3 |k >.
Occurred transitions can be registered by analyzing star’s spectrum (one can detect the line in

spectrum consistent with the transition frequency). The frequency of photons emitted during the
transition near the surface of the star in a locally inertial reference frame ν12 = 3.8892 · 1010 Hz
will undergo gravitational redshift when leaving the star and become ν∞ :

zg = (1−Rg/Rns)
−1/2−1, (2.19)

ν∞ = ν12/(1+ zg) = 2.1679 ·1010Hz. (2.20)

3. Intensity of gravitational transition’s spectral line

One needs to compare the intensity of gravitational transition’s spectral line with the inten-
sity of thermal emission to be sure that the first one is observable. Spectral line arises from the
spontaneous emission of helium atom in the excited second gravitational state.

According to the perturbation theory the probability of spontaneous emission in a unit of time
is determined as

dPf i =
2π

h̄
|< f |Û |i > |2dρ(E f ), (3.1)

where |i >, | f > are the initial and the final states of the system atom-electromagnetic field respec-
tively, dρ(E f ) is the density of the number of final states, Û is the interaction operator of the field
(characterized by the magnetic vector potential ~A) with the magnetic moment of the atom having
the form:

Û =−~µatomrot~A = 2µB(~se1 +~se2)rot~A. (3.2)
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In a case of emission of one photon the interaction operator is

Û = ∑
α

2µB(
2π h̄c2

V w
)1/2e−i~k~r−iwt i(~se1 +~se2 , [

~k,~eα ])a+~k,α , (3.3)

where~k is a wave vector of emitted photon, k = w/c,~eα is its polarization vector, a+~k,α is the photon
creation operator.

The initial and the final states of the system atom-electromagnetic field are

|i >= |n~k,α > Ai(z/l0−λ2)/N2 ·χ1 = |0 > |2 > χ
1, (3.4)

| f >= |1 > |1 > χ
1, (3.5)

as we assumed helium to be in a 23S-state: 1s12s1 with a spin projection quantum number Sz = 1,
that did not change; |n~k,α > is a state in which n photons are in the mode~k,α .

After the summation over α and integration over solid angle one can get the probability of
spontaneous emission in a unit of time

P21 =
16µ2

Bw21g2

15c5h̄
. (3.6)

The intensity of the spectral line

I21 = h̄w21P21 ∼ 10−28eV/s. (3.7)

Atoms of helium in the second gravitational state form a monatomic layer above the surface of the
star, so the number of them

NHe =
Sns

SHe
=

4πR2
ns

πr2
He
∼ 1028, (3.8)

and the total intensity of them
IN = NHeI21 ∼ 1 eV/s. (3.9)

The lifetime of helium atom above the surface of the star in the second gravitational state
is determined by the process of inelastic scattering of helium from neutrons of the surface. The
following lifetime τ2 is

1
τ2

= vnxy|ψ(z = rnucl)2|2σinelast , (3.10)

where v =
√

2E2/mHe is the speed of helium atom falling to the surface, nxy is the density of
helium atoms in xy plane, ψ(z = rnucl)2 is the wave function of helium at the nuclear distance
rnucl = 2 ·10−13 sm, σinelast is the inelastic scattering cross section of neutron from alpha-particle at
low energies. The cross section is known to be less than σinelast . 10−4 b according to the Nuclear
Data library RUSFOND.

The lifetime τ2 and the corresponding spectral line width δν are

τ2 & 8.7831 ·1010s, (3.11)

δν . 1.1386 ·10−11Hz. (3.12)
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The thermal emission of the neutron star considered as the black body with the temperature
T = 0.4 K has the intensity according to the Planck’s law:

Ins =
h̄w3

21
4π2c2

1
eh̄w21/kT −1

Snsδν . 10−4eV/s, (3.13)

where Sns - the surface area of the neutron star, δν - width of the spectral line due to the interaction
with the surface.

If we consider the detector on the Earth with linear scale ldet ∼ 1 km and assume that the
distance between the star and the detector is L = 5000 light years (the distance between the Earth
and the Boomerang nebula, which is the coolest place known in the Universe), then the intensity of
radiation to the given solid angle will be:

IN,dΩ =
1

4π
IN

πl2
det

L2 ∼ 10−34eV/s. (3.14)

The intensity of cosmic microwave background radiation (TCMB = 2.7 K) to the detector:

ICMB =
h̄w3

21
4π2c2

1
eh̄w21/kTCMB−1

(πl2
det)δν . 10−4eV/s. (3.15)

4. Conclusion

Gigahertz range of radiation from neutron stars has not been investigated well till now, but
in the near future such observations are planned. Registration of spectral lines consistent with
transitions between gravitational levels is of great interest. If gravitational states’ spectral lines are
detected, we will be able to study quantum gravitational states of helium, to get gravitational mass
of the atom and to get new information about the temperature of cosmic microwave background
and the Universe.
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