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The fully Bayesian approach to the problem of deriving constraints for cosmic ray (CR) model
parameters has several advantages. These are: (i) an efficient global scan of the whole parameter
space allowing us to explore and take into account parameter correlations and degeneracies, (ii)
a best-fit point and statistically well-defined errors on the parameters, (iii) the ability to include
and marginalize over "nuisance" parameters (such as modulation potential and error rescaling
parameters) making the analysis more robust. For this study, we use the latest version of the CR
propagation code GALPROP together with the BAMBI code, the most efficient Bayesian analysis
code available to date that combines MultiNest with Neural networks. The results of the analysis
will be reported during the conference.
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1. Introduction

Considerable achievements in astrophysics of CRs in recent years have become possible due
to superior instrumentation launched into space and to the top of the atmosphere. Such advances
stimulate hopes for significant advances in many related areas, such as indirect searches for dark
matter, the origin and propagation of CR, particle acceleration in putative CR sources (SNRs) and
the interstellar medium (ISM), studies of our local Galactic environment, CR propagation in the
heliosphere, and the origin of extragalactic diffuse emissions.

Getting most of the accurate astrophysical measurements requires reliable and detailed cal-
culations. Our current knowledge of CR propagation in the Galaxy is based on a large body of
observational data together with substantial theoretical background: the latest developments in CR
acceleration and transport mechanisms, detailed maps of the three-dimensional Galactic gas dis-
tribution, detailed studies of the interstellar dust, radiation field, and magnetic field, as well as
up-to-date particle and nuclear cross section data and codes. However, the number of parameters
in realistic models incorporating all of this information is large, and using the available data to
perform statistical inference on the models’ free parameters is a highly non-trivial task. In the past
this has only been possible with analytical or semi-analytical models where the computation is fast
[1]-[5]. But, such models necessarily require many simplified assumptions to allow the problem to
be analytically tractable and to reduce the computational load, making the estimation of the confi-
dence level of their results difficult. More realistic treatments using the analytic approach lead to a
growing complexity of the formulae, thus removing any computational advantage over the purely
numerical approach [6].

The Bayesian methods are more and more often used in multi-dimensional statistical analyses
in physics and astrophysics, where traditional fitting methods have failed or require unrealistic
resources. The fully Bayesian approach to the problem of deriving constraints for CR propagation
model parameters has several advantages. Firstly, the higher efficiency of Bayesian methods allows
us to carry out a global statistical analysis of the whole parameter space, rather than be limited
to scanning a reduced number of dimensions at the time. This is important in order to be able
to fit simultaneously all relevant CR parameters and to explore degeneracies. Secondly, we can
marginalize (i.e., integrate over) the parameters one is not interested in at almost no additional
computational costs, thus obtaining probability distributions for the parameters of interest that fully
account for correlations in the global parameter space. Thirdly, our method returns not only a
global best fit point, but also statistically well-defined errors on the parameters, which is one of the
most important achievements of this work. Finally, we are able to include in our analysis a large
number of “nuisance” parameters (such as modulation potentials and experimental error rescaling
parameters, see below for details) that mitigate the impact of potential systematic errors in the
data and/or in the theoretical model, thus making our fits much more robust. Bayesian inference
however requires to choose priors for the parameters involved. This is done very carefully in the
present work, and our results do not depend strongly on the choice of priors, which again is an
hallmark of a robust statistical analysis.

The GALPROP1 code is the most advanced of its kind (see Moskalenko et al., these Pro-
ceedings). GALPROP uses astronomical information and other data as input to self-consistently

1http://galprop.stanford.edu
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predict CRs, γ-rays, synchrotron and other observables. The code provides a full numerical cal-
culation of the CR spectra and intensities, together with the diffuse emissions associated with the
CRs interacting with the interstellar gas, radiation, and magnetic fields. A considerable optimiza-
tion and parallelization of the fully numerical GALPROP code made possible a complete inference
for propagation parameters in a Bayesian framework [7].

The purpose of this work is to build on the framework established in [7] and improve it in
several ways. We introduce an automated neural network training in the form of the BAMBI algo-
rithm, which speeds up the convergence of our scans by a factor of∼ 2. The ensuing trained neural
network can then be used to conduct a profile likelihood analysis, which (being typical 10 times
more computationally expensive than a Bayesian posterior) would otherwise be computationally
impossible. The speed-up at this stage is of a factor∼ 105 or more. From the physics point of view,
we now constrain both the CR propagation model parameters and the source abundances, using an
iterative scheme to convergence.

2. Bayesian Inference

Bayesian inference is based on the posterior probability distribution function (pdf) for the
parameters, which updates our state of knowledge from the prior by taking into account the infor-
mation contained in the likelihood. Denoting by Θ the vector of parameters one is interested in
constraining, and by D the available observations, Bayes Theorem reads

P(Θ|D) =
P(D|Θ)P(Θ)

P(D)
, (2.1)

where P(Θ|D) is the posterior distribution on the parameters (after the observations have been
taken into account), P(D|Θ) = L (Θ) is the likelihood function (when considered as a function
of Θ for the observed data D) and P(Θ) is the prior distribution, which encompasses our state of
knowledge about the value of the parameters before we have seen the data. Finally, the quantity
in the denominator of eq. (2.1) is the Bayesian evidence (or model likelihood), a normalizing
constant that does not depend on Θ and can be neglected when interested in parameter inference.
The evidence is obtained by computing the average of the likelihood under the prior (so that the
r.h.s. of eq. [2.1] is properly normalized),

P(D) =
∫

P(D|Θ)P(Θ)dΘ. (2.2)

The evidence is the prime quantity for Bayesian model comparison, which aims at establishing
which of the available models is the “best” one, i.e., the one that fits the data best while being
the most economical in terms of parameters, thus giving a quantitative implementation of Occam’s
razor [8].

Together with the model, the priors for the parameters which enter Bayes’ theorem, eq. (2.1),
must be specified. Priors should summarize our state of knowledge and/or our theoretical prejudice
about the parameters before we consider the new data, and for the parameter inference step the
prior for a new observation might be taken to be the posterior from a previous measurement (for
model comparison issues the prior is better understood in a different way, see [9]).
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The problem is then fully specified once we give the likelihood function for the observa-
tions. The posterior distribution P(Θ|D) is determined numerically by drawing samples from it
and Markov Chain Monte Carlo (MCMC) techniques can be used for this purpose.

3. The BAMBI algorithm

In this work we use the BAMBI algorithm [10] for Bayesian sampling. BAMBI implements
MULTINEST [11]-[13] to perform nested sampling, as described in [14, 15], and the neural network
training algorithm SKYNET [16] to learn the likelihood function and thus accelerate the sampling
procedure.

3.1 MULTINEST

MULTINEST is a generic algorithm that implements the nested sampling technique. This
technique is aimed at computing the Bayesian evidence, but is able to produce samples from the
posterior in the process of doing so. MULTINEST is able to take advantage of parallel computing
architectures by allowing each CPU to compute a new proposal point. As the run progresses, the
actual sampling efficiency (fraction of accepted samples from total samples proposed) will drop as
the ellipsoidal approximation is less exact and the likelihood constraint on the prior is harder to
meet. By computing N samples concurrently, we can obtain speed increases of up to a factor of N
with the largest increase coming when the efficiency drops below 1/N.

3.2 SKYNET

SKYNET is an algorithm for training artificial neural networks. Training is performed using a
fast, approximate second-order algorithm to find the neural network weights that best approximate
a value of L = log(P(D|Θ,φ)) for a given input {Θ,φ}. This method efficiently finds an optimal
set of weights and is designed to minimize overfitting to the training data. `-2 norm regularization
aids the algorithm in finding the global optimum. A test data set, distinct from the training data,
is used to stop training when the algorithm begins to overfit to the training data. The algorithm is
described in more detail in [16].

3.3 Combining into BAMBI

Once SKYNET’s training has converged on likelihood samples provided by MULTINEST,
within the BAMBI framework the network is tested for the accuracy of its predictions. If the
root-mean-square error is below a user-defined threshold, the network will be used for calculating
future likelihoods by MULTINEST. If not, then more samples will be generated using the original
likelihood function and training will resume once enough new samples have been collected. This
setup is explained in more detail and examples are provided in [10]. Setting the accuracy thresh-
old too low will require more samples from the original likelihood and more network training,
while setting it too high can produce unreliable likelihood calculations that affect the evidence and
posterior samples.
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4. Propagation Model and Parameters

Our benchmark model for this study is the diffusion-reacceleration (DR) model, which is by
far the most commonly used propagation model used with GALPROP [17]-[29]. The aim of this
study is to simultaneously constrain the propagation parameters, as in [7], as well as the primary
CR abundances, since these have a non-negligible effect on the propagation parameters that best fit
the observed the CR fluxes. For each parameter in ΘD we used a uniform prior distribution, with
endpoints that were informed by the results of [7].

The nuclear chain that we use begins at 30Si and proceeds down to protons.The source abun-
dances of nuclei 6≥ Z≥ 14 have an important influence on the B/C and 10Be/9Be ratios used in this
study. We therefore let the abundances of the ten most important elements vary freely, with prior
ranges determined by the measured CR abundances from ACE data at a few 100 MeV/nucleon [30].
The elements that are allowed to vary are H, He, C, N, O, Ne, Na, Mg, Al and Si. The abundances
Ai are defined with respect to the proton injection abundance AH, whose absolute normalization is
fixed by its final flux at Earth, Np, at the reference energy Eref = 102 GeV. We label the abundance
parameters ΘA, and define AH ≡ 1.06×106.

Since this constitutes a significant enlargement of the parameter space, we split the analysis
into two sets of scans: the first over abundances, keeping the propagation parameters fixed, and the
second over propagation parameters, fixing the abundances to the posterior mean of the first scan.
We describe this procedure in more detail in Section 4.1.

4.1 Iterative Procedure

Given the large parameter space (18 physical parameters, in addition to the 7 nuisance pa-
rameters), it is highly advantageous to split the search into two distinct runs, which we alternated
in order to obtain an iteratively-converged result. This is facilitated by the fact that, for a fixed
set of propagation parameters, the final CR composition of the ISM depends linearly on the in-
jection abundance of each isotope. It thus becomes necessary to run GALPROP only once per
nuclear species (O(10)) rather than once per likelihood evaluation (O(105)). We thus ran a first,
fast scan over the abundance parameters ΘA, using the results of a first low-resolution scan to fix
the propagation parameters. We then ran our full MULTINEST/BAMBI scan over the propagation
parameters ΘD, this time fixing the abundances to the posterior means obtained in the first scan.
A second abundance scan was then performed with the updated propagation parameters. In order
to avoid a second, computationally expensive scan over ΘD, we performed the second iteration
by importance sampling of a thinned version of the first chain that we obtained. This allowed the
likelihood evaluations to be massively parallelized, which is not possible with MultiNest.

5. Conclusion

This work is still in progress. The results will be reported during the conference.
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