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Most models of the origin of ultra high energy cosmic rays rely on the existence of luminous

extragalactic sources. Cosmic rays escaping the galaxy where the source is located produce a suf-

ficiently large electric current to justify the investigation of plasma instabilities induced by such

current. Most interesting is the excitation of modes that lead to production of magnetic perturba-

tions that may scatter particles thereby hindering their escape, or at least changing the propagation

mode of escaping cosmic rays. We argue that self-generation of waves may force cosmic rays to

be confined in the source proximity for energies E . 107L
2/3

44 GeV for low background magnetic

fields (B0 ≪ nG). For larger values of B0, cosmic rays are confined close to their sources for ener-

gies E . 2×108λ10L
1/4
44 B

1/2
−10 GeV, where B−10 is the field in units of 0.1 nG, λ10 is its coherence

lengths in units of 10 Mpc and L44 is the source luminosity in units of 1044 erg/s.

The 34th International Cosmic Ray Conference,

30 July- 6 August, 2015

The Hague, The Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
I
C
R
C
2
0
1
5
)
5
0
5

Cosmic ray self-confinement Pasquale Blasi

1. Introduction

The onset of extragalactic cosmic rays and the end of the Galactic cosmic ray (CR) component

are subjects of major investigation at this time. However this transition region remains poorly

understood [1] and the conclusions we draw depend rather sensibly on the mass composition and

on the spectral shape of extragalactic CRs. Of particular importance is the fact that in most models

of the transition from Galactic to extragalactic CRs one is forced to assume that the flux of the

extragalactic component is suppressed at sufficiently low energies. Some constraints on the sources

of ultra high energy CRs (UHECRs) can be obtained as follows [2]: for a source with size R

to be able to accelerate CRs to energy E , the Larmor radius E/ZeB must be smaller than the

size R (here Ze is the charge of CRs and B is the magnetic field). This implies that B > E/ZeR.

Since the source must be able to guarantee at least a magnetic energy flux vB2/4π , where v is

the velocity of the accelerator, one easily gets a lower limit on the source luminosity: L & 3.2×

1045Z−2
(

E
1020eV

)2
β erg/s where β = v/c is the dimensionless velocity in units of the speed of

light. The required luminosity becomes even higher in the case of relativistic sources [2]. The

general conclusion is that the sources of UHECRs have to be very luminous.

Being interested in investigating the escape of CRs from their sources, here we will not con-

sider the problem of acceleration any longer and we will concentrate on the propagation outside

the host galaxy inside which the actual source is located. On the other hand, for the sake of brevity

we will refer to such galaxy as the source.

Let us assume, for simplicity, that CRs leave their host galaxy with an injection spectrum

q(E) ∝ E−2 up to some maximum energy Emax. The differential number density of CRs streaming

out of such sources can then be written as:

nCR(E,r) =
q(E)

4πr2c
=

LCR

Λ

E−2

4πr2c
≈

≈ 1.7×10−14L44 E−2
GeV r−2

Mpc cm−3GeV−1 , (1.1)

where we have adopted Λ = ln(Emax/Emin) ≈ 25 and LCR = 1044L44 erg/s, energies are in GeV

and distances in Mpc. We assume that the source is in a region of the intergalactic medium (IGM)

where the density of baryonic gas is nb = Ωbρcr/mp = 2.5× 10−7
(

Ωbh2

0.022

)

cm−3 and we assume

that there is a cosmological magnetic field with a strength B0 = 10−13B−13 G and a correlation

scale of the order of λB ∼ 10 Mpc, so that on scales smaller than λB, the field can be considered as

oriented along a given ẑ direction. In such a situation, the Alfvén speed is vA = B0/
√

4πΩbρcr ≈

44 B−13cm s−1.

The positively charged CRs leaving their sources form an electric current that is compensated

by motions in the background plasma so as to ensure local charge and current neutrality. Here we

investigate whether this situation gives rise to an instability and what are the consequences in terms

of CR propagation and intergalactic magnetic field generation.

2. Calculations

The current associated with CRs streaming away from their sources in the Intergalactic medium
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is easily written as a function of the minimum energy E of particles in the current as

JCR = enCR(> E)c =
eLCRE−1

4πΛr2
. (2.1)

This expression is strictly valid only if the background field is zero, or if the Larmor radius of the

particles is rL ≫ λB, but we shall see that the above estimate for the current density turns out to

hold also in the diffusive regime.

A current propagating in a plasma can give rise to instabilities of different types. Granted that

the current carrying particles are well magnetised (vA > JCR/(enb), which from Eq. 2.1 is seen to

imply B0 > 2×10−13 L44E−1
GeVr−2

Mpc) G, the fastest growing instability arises when the condition

JCRE >
ceB2

0

4π
(2.2)

is satisfied. This condition, which is the standard one for the development of non-resonant modes

of the streaming instability [3], is equivalent to the requirement that the energy density of CRs be

locally larger than the energy density in the form of pre-existing magnetic field, B2
0/4π . For q(E)∝

E−2, this requirement becomes independent of E and, using Eq. 2.1, can be simply formulated as:

r < rinst = 3.7×104 L
1/2
44

B−13

Mpc. (2.3)

When Eq. 2.3 is satisfied the fastest growing modes in the amplified field δB have a wavenumber

kmax that reflects the equilibrium between magnetic tension and JCR × δB force on the plasma,

namely kmaxB0 =
4π
c

JCR, and their growth rate is:

γmax = kmaxvA =

√

4π

nbmp

JCR

c
, (2.4)

independent of the initial value of the local magnetic field B0. The scale of the fastest growing

modes k−1
max is much smaller than the Larmor radius of the particles dominating the current (this is

entailed in the condition for growth, Eq. 2.2), therefore they have no direct influence on particle

scattering. This conclusion is however changed by the non-linear evolution of the modes. As long

as the instability develops on small scales, it cannot affect the current, hence one could treat the two

as evolving separately. A fluid element will be subject to a force that is basically ∼ JCRδB/c: its

equation of motion is ρ(dv/dt)≃ 1
c
JCRδB, with δB(t) = δB0 exp(γmaxt). As an estimate, one can

write the velocity of the fluid element as v ∼ (δB(t)JCR)/(cργmax), which upon integration leads

to an estimate of the mean fluid displacement as ∆x ∼ (δB(t)JCR)(cργ2
max). We can then estimate

the saturation of the instability by requiring that the displacement equals the Larmor radius of

particles in the current as calculated in the amplified magnetic field, E/eδB: when this condition

is fulfilled, scattering becomes efficient and the current is destroyed. This simple criterion returns

the condition:
δB2

4π
≈

JCRE

ce
= nCR(> E)E. (2.5)

Since nCR(> E) ∝ E−1 in the case considered here, the saturation values of the magnetic field is

independent of the energy of particles in the current driving the instability. A somewhat lower
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value of the saturation was inferred in [4], as due to the non-linear increase of the wavelength of

the fastest growing modes. Following such a prescription our saturation magnetic field would be

∼ 10 times smaller. Eq. 2.5 expresses the condition of equipartition between the CR energy density

and the amplified magnetic pressure, a condition that is often assumed in the literature without

justification, and that here arises as a result of the physics of magnetic amplification itself.

The field strength, as a function of the distance r will read

δB(r) = 3.7×10−9L
1/2
44 r−1

Mpc Gauss . (2.6)

This rather strong magnetic field will develop over distances r from the source that satisfy Eq. 2.3

and under the additional condition that the growth is fast enough so as to reach saturation in a frac-

tion of the age of the universe, t0 (numerical simulations of the instability [3] show that saturation

occurs when γmaxτ ∼ 5−10). This latter condition reads γmaxt0 & 5 and translates into:

r < rgrowth = 1.2×104L
1/2
44 E

−1/2
GeV Mpc . (2.7)

If the conditions expressed by Eqs. 2.3 and 2.7 are fulfilled, then the magnetic field can be estimated

as in Eq. 2.6 and since δB ≫ B0 and there is roughly equal power at all scales, it is reasonable to

assume that particle propagation can be described as diffusive, with a diffusion coefficient corre-

sponding to Bohm diffusion in the magnetic field δB, so that

D(E,r) = 9×1024EGeV rMpc L
−1/2

44 cm2 s−1. (2.8)

The initial assumption of ballistic propagation of CRs escaping a source leads to conclude that

particles would produce enough turbulence to make their motion diffusive. The diffusion time over

a distance r from the source can be estimated as τd(E,r)= r2/D(E,r)≈ 3.3×1016rMpc E−1
GeV L

1/2

44 yr

from which follows that particles can be confined within a distance r from the source for a time

exceeding the age of the Universe, if their energy satisfies the condition:

E . Econf = 2.6×106 rMpc L
1/2

44 GeV . (2.9)

One might argue that this conclusion contradicts the assumptions of our problem: for instance

the density of particles in the diffusive regime is no longer as given in Eq. 1.1. This is certainly

true, but the current that is responsible for the excitation of the magnetic fluctuations remains the

same, as can easily be demonstrated: for particles with energy E > Econf in Eq. 2.9, and assuming

that energy losses are negligible, quasi-stationary diffusion can be described by the equation

1

r2

∂

∂ r

[

r2D(E,r)
∂n

∂ r

]

=
q(E)

4πr2
δ (r), (2.10)

where q(E) is the injection rate of particles with energy E at r = 0. This equation is easily solved

to provide the density of CRs at distance r from the source:

n(E,r)≈
q

8πrD(E,r)
. (2.11)

Clearly, by definition of diffusive regime, the density of particles returned by Eq. 2.11 is larger than

the density in the ballistic regime, Eq. 1.1. However, the current in the diffusive regime is

Jdiff
CR = eED(E,r)

∂n

∂ r
= e

q(> E)

4πr2
, (2.12)
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which is exactly the same current that we used in the case of ballistic CR propagation (see Eq. 2.1).

This is a very important and general result: the magnetic field in Eq. 2.6 is reached outside a CR

source independent of the mode of propagation of CRs, since it is only determined by the current

and not by the absolute value of the CR density. Clearly the particles that are confined within a

distance r around the source do not contribute to the CR current at larger distances.

3. Results and implications

The confinement energy in Eq. 2.9 is somewhat ambiguous since it depends on the distance

r. What is the highest energy at which CRs escaping a source of given luminosity are confined

to the source vicinity? In order to answer this question we need to take into account all the three

conditions that need to be imposed to guarantee confinement, namely Eq. 2.3 (existence of fastly

growing modes), Eq. 2.7 (growth rate faster than the expansion of the universe) and Eq. 2.9 (con-

finement). The first condition yields a limit on the distance from the source that is easy to satisfy,

unless the strength of the background magnetic field is increased by several orders of magnitude,

in which case however other complications arise (see discussion below).

The other two conditions lead to the constrain

Ecut ≈ 107 GeV L
2/3
44 . (3.1)

These particles are confined within a distance from the source:

rconf ≈ 3.8 Mpc L
1/6
44 . (3.2)

Within such a distance the magnetic field is as given by Eq. 2.6 and larger than δB(rconf) ≈ 9.6×

10−10L
1/3
44 G. It is noteworthy that both the size of the confinement region and the magnetic field

depend weakly upon the CR luminosity of the source, respectively as L
1/6

44 and L
1/3

44 . Hence we can

conclude that magnetic fields at the level of 0.1− 1nG must be present in regions of a few Mpc

around the sources of UHECRs. As a consequence, the spectrum of CRs leaving these sources and

eventually reaching the Earth must have a low energy cutoff at an energy Ecut . This kind of cutoff

has been often postulated in the literature in order to avoid some phenomenological complications

that affect models for the origin of UHECRs. For instance, a low energy cutoff is required in the

dip model [5, 6] to describe appropriately the transition from Galactic to extragalactic CRs. This

feature is usually justified by invoking some sort of magnetic horizon in the case that propagation of

UHECRs is diffusive in the lower energy part of the spectrum [7]. A similar low energy suppression

of the CR flux is required by models with a mixed composition [8]. In the calculations illustrated

above, the presence of nuclei is readily accounted for, provided the current is still produced by

protons (assumed to be the most abundant specie). In this case, the value of Ecut is simply shifted

to Z times higher energy for a nucleus of charge Z.

As discussed above, the condition that guarantees the existence of non-resonant modes (Eq. 2.3)

is easily satisfied, unless the background magnetic field reaches B0 ≈ 9.6×10−10 L
1/3

44 . However,

when this happens the calculations above break down for another reason: CRs can freely stream

from the source only if their Larmor radius in the pre-existing magnetic field is much larger than

the assumed coherence scale of the field, namely

E ≫ 106GeV B−13λ10. (3.3)
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When Eq. 3.3 is not fulfilled, namely when the background field is relatively strong, then the

propagation of CRs from the source becomes intrinsically one dimensional, which implies that the

density of particles can be written as

nCR(E,r) =
Q(E)t

πr2
Lvt

=
2Q(E)

πRc(E)2c
, (3.4)

where we used the fact that the mean velocity of the particles is v= c/2 for a distribution of particles

that is isotropic on a half plane and we assumed that particles spread in the direction perpendicular

to the background field by a distance equal to Rc(E) = max(rL(E),Rs) with Rs the source size and

rL(E) the Larmor radius of particles of given energy E . For a given source size rL > Rs as soon as

EGeV & 9×106B−10(Rs/100kpc). At energies larger than this:

nCR(E,r)≈ 47L44E−4
GeVB2

−10cm−3GeV−1, (3.5)

If particles with energy > E are able to reach a given location, the current at that location is

JCR ≈ e
c

2
EnCR(E,r) = e

EQ(E)

πr2
L

, (3.6)

which results in non-resonant growth of the field for

E < Einst = 3.5×109GeV L
1/2
44 , (3.7)

independent of B0, and in a saturation magnetic field

δB ≈ 0.7 E−1
GeV L

1/2
44 B−10 Gauss. (3.8)

This value of the magnetic field is apparently very large and reflects the very large density of

particles at low energies in the proximity of the source, as due to the reduced dimensionality of the

problem. However one should notice that the value is normalized to the density of GeV particles,

which only live in the immediate vicinity of the source and generate small scale fields to which

high energy particles are almost insensitive. At Mpc scales, where only high energy particles can

reach, the field strength is much lower as we discuss below.

Assuming again that the diffusion coefficient is Bohm-like, one can write:

D(E,r) = 4.8×1016 E2
GeV L

−1/2

44 B−1
−10 cm2/s, (3.9)

which leads to an estimate of the diffusion time: τdiff = 6.2×1024 E−2
GeV L

1/2
44 B−10 r2

Mpc yr. Requir-

ing that particles reach the location at distance r in a time shorter than the age of the universe, we

then obtain:

rconf ≈ 0.5

(

E

107GeV

)

L
−1/4

44 B
−1/2

−10 Mpc. (3.10)

Following the usual procedure, one can calculate the growth rate of the fastest modes:

γmax =

√

4π

ρb

ecnCR(> E)

2
= 1.9×1018L44B2

−10E−3
GeV s−1, (3.11)

6
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and impose the condition that γmaxt0 > 5, which reads:

E . Egrowth ≈ 5.3×1011 GeVL
1/3

44 B
2/3

−10. (3.12)

The intersection of all the conditions listed above leads to conclude that particles with energies

E < Ecut = 2.2×108GeV L
1/4

44 B
1/2

−10 λ10 (3.13)

will be confined within a radius

rconf ≈ 10 Mpc λ10 . (3.14)

The amplified magnetic field at such distance is

δB ≈ 3×10−9G L
1/4

44 B
1/2

−10 λ−1
10 . (3.15)

We emphasise again that the results illustrated both in the case of 3-d (lower B0) or 1-d propa-

gation (higher B0) are only sensitive to the CR current, and hence insensitive to whether particle

propagation is ballistic or diffusive.

4. Summary

The strong effect that CRs have on the environment in which they propagate has long been

investigated in the context of particle acceleration at shock waves [9, 3] and is accompanied by

observational consequences [10, 11], such as spatially thin rims of enhanced X-ray synchrotron

emission (see [12] for a review). Here we investigated these processes in the immediate proxim-

ity of the sources (or host galaxies of the sources) of UHECRs, where the CR current generates

instabilities that can change of way CRs propagate.

For weak values of the strength of the pre-existing magnetic field B0 (say . 10−10 G), in the

absence of non-linear phenomena, CRs propagate in approximately straight lines. The resulting

electric current leads to the development of a Bell-like instability, that modifies the propagation of

particles to be diffusive: we find that particles with energy . 107L
2/3
44 GeV are confined inside a

distance of ≈ 3.8L
1/6

44 Mpc from the source for times exceeding the age of the Universe, thereby

introducing a low-energy cutoff at such energy in the spectrum of CRs reaching the Earth. Since the

confinement distance is weakly dependent on the source luminosity, we conclude that a region with

∼ nG fields should be present around any sufficiently powerful CR source. If larger background

magnetic fields are present around the source, the gyration radius of the particles can be smaller

than the coherence scale of the field, and in this case CR propagation develops in basically one

spatial dimension. For a coherence scale of 10 Mpc, CRs are confined in the source proximity for

energies E . 2×108L
1/4
44 B

1/2
−10 λ10 GeV.

Whether nature behaves in one or the other way depends on the poorly known value of B0.

Faraday rotation measures [13] provide weak, model dependent upper limits to B0 in the nG range,

while lower limits can imposed based on gamma ray observations of distant TeV sources [14, 15]

(B0 & 10−17 G).

The physical prescription adopted here leads to estimating the strength of the self-generated

magnetic field δB in the source proximity at the level of equipartition with the energy in the form

7
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of escaping cosmic rays, independent of the value of the pre-existing field, B0. A weak dependence

on B0 was instead found for the saturation level in [4], which in our case would lead to δB about

∼ 10 times smaller for small values of B0, thereby reducing the energy below which CRs are

confined in the source proximity. Understanding the dynamics of the magnetic field amplification

and saturation is clearly very important. One could test the amplification mechanism in the case

of supernova remnant shocks: in this case the saturation criterion used here translates to δB ≈
√

4πwCRvS/c, with vS the velocity of the supernova blast wave and wCR is the energy density in

accelerated particles. Applying this criterion, we obtain an estimate of the magnetic field which is

in good agreement with that measured in young galactic SNRs [12]. On the other hand, due to the

relatively small value of δB/B0, the saturation provided by [4] would return a value of δB only a

factor ∼ 2 smaller, too small a difference to discriminate between the two estimates. The testing is

then left to numerical experiments studying the propagation of a current of energetic particles in a

low density, low magnetic field plasma: hybrid simulations with this aim are currently ongoing.

The phenomenon of CR confinement illustrated here has profound implications for the de-

scription of the transition region between Galactic and extra-galactic CRs [5, 6, 8]. It is rather

tantalising that the cutoff obtained here as due to self-trapping is in the same range of values that

have previously been invoked in the literature based upon phenomenological considerations.
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