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The Cherenkov Telescope Array (CTA) will be the next generation ground-based gamma-ray
instrument. It will be made up of approximately 100 telescopes of at least three different sizes,
from 4 to 23 meters in diameter. The NectarCAM is a Cherenkov camera proposed for the Mid-
Size Telescopes of CTA. Its characteristics make it one of the most challenging camera projects
for a high speed data acquisition (DAQ) system in CTA has due to its average output rate of up
to 40-Gbps on 265 Ethernet 1000baseT links, bundled to 4 x 10Gbps on four optical links and
reduced to 10 Gbps after event-building.

This paper presents results on characterisation and validation procedures carried out on several
Ethernet switches, which have been considered as hardware for the camera-internal data traffic
of NectarCAM. Two complementary types of data generators, one highly synchronous with up to
64 1-Gbps channels based on an FPGA core, the other with up to 320 1-Gbps channels working
on 64 Scientific Linux boards, have been built and used to stimulate the DAQ system with six

Ethernet switches and a standard Linux PC for IP packet reception.
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1. Introduction

The NectarCAM [4] data acquisition system is designed to use commercial switches to funnel
265 Gb Ethernet links from the front end boards into four 10-Gb links to the camera server. Fol-
lowing the event of a camera trigger, each of the front end boards sends out to the camera server
the data they captured, framed in one UDP packets. These packets are called event fragments and
the assembly of these fragments in the camera server is called event-building.

The schedule between trigger input and data output is deterministic: The UDP frames are built
in a data pipeline implemented in programmable logic in the front end FPGA. In the current design,
there is no clock distribution to the camera front end boards: each front end board has its own clock
source. Given that the trigger pulse is distributed to all camera front end boards simultaneously,
the corresponding data frames are sent out to the back end switches nearly simultaneously with a
spread of several nano-seconds due to differences in cable lengths.

This design imposes severe constraints on the camera-internal network structure, which are
described. We present our conclusions from stress tests and consequences for the selection of
network switches for the NectarCAM infrastructure.
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Figure 1: Illustration of the physics data flow from a NectarCAM front-end board to the camera server and
further downstream to central CTA DAQ: The 265 NectarCAM modules are connected by groups of 44 or
45 to six Ethernet switches, which connect to a single camera server by 10-Gbps Ethernet links. The number
of input ports is limited to 48 for most standard switches, and the number of 10-Gbps downstream links to
the camera server may vary from 1 to 6 SFP+ links, depending on the final data bandwidth needed.

2. NectarCAM internal network

The absence of a complex buffer handling in the front-end boards in order to minimise produc-
tion cost excludes any kind of re-transmit of data packets in case of loss between front-end boards
and camera server. Losses due to collisions are excluded with point-to-point connections for the
UDP emitters (front-end) and the receiver process in the camera server. However a congestion
may occur due to the fact that typical switches concentrate 44 or more inputs into a 10-Gbps line
(Figures 1, 2).

As a matter of fact the simultaneous arrival of 44 event fragments on 1-Gbps lines saturates
immediately the 10-Gbps outputs, and internal switch buffers are immediately solicited. The un-
derlying physics process of the data triggers (Cherenkov light from secondary particles of VHE
gamma rays in the atmosphere) being totally independent, bursts of events with high instantaneous
trigger rates may occur according the Poisson statistics. The maximum trigger rate is only limited



Stress testing Ethernet Switches for NectarCAM with a synchronous UDP frame generator P. Sizun

44 Front-End Moduled Il

2
H

44 Front-End ModuledIlII

Switch 2.1

45 Front-End ModuledIlII
.Switch 2.2
44 Front-End Modued!1 | e T TR TTNAT AN CNNINIA

S e

y i
dalEronkEndlModdies T T
adh

NI

c!
Cameg=Server

Switch 3.2 — ||||||||‘
44 Front-End ModulediIII] |||||||||||||||||||||||||||||||||||||||||||' ¢
w

-Switch 3.3

Figure 2: Possible stacking schemes for Ethernet switches within NectarCAM. The picture (unrealistically,
for the sake of illustration) combines three different examples for a 1:1, 2:1 and 3:1 concentration of 44 (or
45) 1-Gbps inputs per switch into 1, 2 or 3 10-Gbps down-links towards the camera server. Existing buffers
in the front-end boards, in the Ethernet switches (input queues) and in the camera server (network interface
hardware buffers and system memory) are drawn in yellow. Thin arrows stand for 1-Gbps links, thick arrows
for 10 Gbps. Data flow from the left (front-end modules or data generators) to the right (camera servers),
crossing the switch stack in the center of the picture.

by the assumed dead time of front-end modules (2us, where no new trigger would lead to an emis-
sion of new data). Additional high-rate bursts due to astronomical phenomena like a star in the
field of vision or a shooting star or airplane are not subject to the constraint of zero packet loss, as
they are not supposed to be useful for any genuine measurement with Cherenkov telescopes. But
switches must recover reliably within an acceptable timescale from any overflow situation. Hence
the buffer structure and dynamical behaviour of the switches used for the camera network is essen-
tial to ensure correct function, and a thorough validation is needed. In the absence of a full camera
equipped with front-end modules, two devices have been built:

o a full-scale Ethernet packet generator based on Linux single-board PCs serving up to 320 1-
Gbps channels on 1000baseT connections with a synchronicity of ¢'(100ns) between chan-
nels,

e a 64-channel UDP packet generator based on Virtex-5 FPGAs [1], allowing synchronicity of
better than 1 ns between all ports, which is described in this conference contribution.

These simulators or “DAQ stimulators” replace the front-end modules, which do not exist in suf-
ficient number for tests up to now. They also allow for independent, variable and absolutely re-
producible tests with a given set of parameters or data samples. An operating mode where real
NectarCAM front-end boards are combined with simulating data generators is also possible.

We assume that switches behave identically, and in particular that we can validate a given
architecture by decomposing it into identical blocks of two or three switches. Furthermore the
behaviour of the connection between switches and camera server is supposed to be independent
from the number of connected switches, as long as the total data rate can be simulated and validated
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otherwise. Therefore we limit tests with the synchronous FPGA-generator to the validation of a
single switch up to an output rate of 10 Gbps.

3. UDP packet generator and reception

Most of the hardware used for this test-bench was designed at Jefferson Labs. A VME/VXS
crate including a controller board, 2 SSP (Sub-System Processor) boards [6], 1 SD (Signal Distri-
bution) and 1 TT (Trigger Interface) [5] board were used at IRFU labs in Saclay as part of the data
acquisition system of the Micromegas Vertex Tracker for the CLAS12 experiment at JLAB. For
the needs of the tests described here, the TI board is used to distribute a single clock source to the
2 SSP boards via the SD board. The TI board is also used to distribute an external trigger signal
and from there through the SD board to each of the SSP boards over the VXS backplane. More
details on these designs can be found in [2, 6, 5, 3].

Firmware has been specifically developed for the SSP boards, in order to generate UDP packets
similar to the NectarCAM data format. Validity of the generated traffic has been checked by means
of Ethernet traffic analysers in hardware (MTS 5800 by JTSU) and for low traffic bandwidth also in
software (WireShark application). Synchronicity of packets emitted on different output channels
of the SSP are measured to be better than 1 ns (between 90 ps for the same board and up to 580 ps
for channels of different boards). The transfer time of a 1024-byte (payload) packet is measured to
be compatible with the expected transfer time of 8.5us

Triggers are provided by a programmable pulse generator (Agilent 33500B), which allows
continuous, constant frequency triggers or a precise number of pulses, as well as a combination of
short constant-frequency bursts, which are repeated at a secondary frequency value.

All packets transiting the switch under test successfully are received by a dual-CPU multi-core
PC with (dual) SFP+ interface card (X520 by Intel). In order to optimise reception of small (1 kB)
packets over 10-Gbps links, we are using the netmap framework [7] and a prototype event-builder
application. Crosschecks of the number of received events are carried out by WireShark and by
reading the packet counters in the switch.

4. Stress tests of Ethernet switches

The set-up was used to examine different types of switches with significantly different char-
acteristics. We carried out simple tests to prove a linear relationship between input rate, packet
size and the number of connected ports on one side and the total output rate on the other. More
interesting tests concerned the behaviour under steady load, just above or below the output satu-
ration bandwidth (static behaviour). Finally we put the data handling inside the switches under
test by increasing the input rate to the maximum wire speed, which would obviously exceed the
average output speed by several factors and can only be compensated by correctly working buffer
mechanism of sufficient size (dynamic behaviour).

All analysed switches allow to obtain continuous lossless transmission at 10-Gbps wire speed,
as long as the input rate does not exceed 10 Gbps divided by the number of connected input ports,
e. g. 27 kHz for 1024-kB packets on 44 ports. Overnight runs have proven reliable function of
all elements in this respect, and variation of input parameters (packet size, loaded ports, trigger
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Figure 3: Saturation extrapolated from various frequencies for a varying number of input ports loaded by
the generator. The theoretical bandwidth of 10 Gb/s corresponds very well to the measured values.

frequency) agree with the expected saturation behaviour (Figure 3). However a simple comparison
between the "deep-buffer” switch DELL S60 and a cheaper model of the same vendor ruled out
the latter by reducing the gap between two successively triggered events to the technically possible
minimum (8us, due to 1-Gbps wire speed). This configuration leads to two successively received
packets on each of the input ports, and some of these event fragments of the second event are lost,
as soon as more than 28 input ports (out of 48) are connected. Obviously this simple situation of
“trigger burst” must be handled correctly to ensure data integrity during standard operation.

Starting from these extreme corner-points, critically quick successive events (bursts) and steady
lossless operation at the output saturation level, we have explored several intermediate situations
in the parameter space of “event separation” (or inverse instantaneous burst rate) and number of
received events (proportional to the burst length). Figure 4 shows the exploration map of complete
reception (e) and loss (x) of data as a function of event separation (abscissa) and the number of
events in the test burst (ordinate), compared to the theoretically expected hyperbolic curve, which
separates the area of lossless reception from the critical domain, where at least one packet has been
lost in transmission.

5. Conclusion

In a joint effort across labs, institutes and collaborations we have built a Ethernet packet gener-
ator in order to test and validate deep-buffer switches for the internal network infrastructure of the
NectarCAM, which is proposed to equip some of the telescopes of the Cherenkov Telescope Array.
The generator emits UDP packets on 1000baseT (RJ45) lines at conditions corresponding exactly
to the IP standard specifications. It has been used to fully qualify the behaviour of a DELL S60
deep-buffer switch with 10 Gb (1.25 GB) memory. Our tests have shown that this type of switches
allows buffering of approximately 40 x 8000 1024-byte payload UDP packets at maximal input
rate, before saturation and loss of single packets. This corresponds to the average value of Nectar-
CAM event triggers within one second and therefore validates the hardware for our purpose. The
corresponding memory size of 330 MB is about a factor four below the announced buffer memory
and plausibly due to the fact that we did not configure any non-factory-reset features of input port
queues like dispatching incoming packets on several independent queues. The dynamic behaviour
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Figure 4: Empirical “watershed” (separating line) of event integrity compared to the theoretical line, at
which where buffer overflow should occur. The inlay shows a zoom on the small-gap/low-number region
surrounded by the dashed line. Measurement points with packet loss are marked with crosses (x), mea-
surement points without loss with bullets (). Agreement between the extrapolated (fitted) value of 7000
buffered packets (per input queue) and all measurements is very good.

of saturation and overflow over a large range of input rates is well reproduced by a simple queuing
model of available buffers in the switch.

Similar switches are not available from many other vendors, and DELL announces to stop
commercialisation of the S60 product next year. When it comes to alternatives, these usually
contain 48 front inputs for 10-Gbps links, which increases the price significantly. For our project
we may have to continue market research and technology watch, but our test tools are well prepared
to qualify replacement candidates within optimal time.
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