
P
o
S
(
I
C
R
C
2
0
1
5
)
7
3
4

Application of Complex Event Processing Software
to Error Detection and Recovery for Arrays of
Cherenkov Telescopes

T. Holch∗a, U. Schwankeb, M. Füßlinga, M. Gajdusb, T. Murachb, I. Oyaa, P. Wagnerb

and P. Wegnera

a DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
b Humboldt–Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany

E-mail: holchtim@physik.hu-berlin.de

Data acquisition (DAQ) and control systems for arrays of Cherenkov telescopes comprise hun-
dreds of distributed software processes that implement the readout, control and monitoring of
various hardware devices. A multitude of different error conditions (malfunctioning detector
hardware, crashing software, failures of network and computing equipment etc.) can occur and
must be dealt with to ensure the speedy continuation of observations and an efficient use of dark
time. Flexible, fast and configurable methods for automatic and centralized error detection and
recovery are therefore highly desirable for the current generation of ground-based Cherenkov
experiments (H.E.S.S., MAGIC, VERITAS) and will be important for the Cherenkov Telescope
Array (CTA), a more complex observatory with O(100) telescopes. This contribution describes a
Java-based software demonstrator that was developed for the High Energy Stereoscopic System
(H.E.S.S.) and uses the complex event processing engine Esper for error detection and recovery.
The software demonstrator analyses streams of error messages in the time domain and aims to
apply recovery procedures that reflect the knowledge of DAQ and detector experts.

The 34th International Cosmic Ray Conference,
30 July- 6 August, 2015
The Hague, The Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:holchtim@physik.hu-berlin.de


P
o
S
(
I
C
R
C
2
0
1
5
)
7
3
4

Complex Event Processing for Error Detection and Recovery T. Holch

1. Introduction

The data acquisition (DAQ) and control systems for major astroparticle experiments are ex-
pected to deliver science data with minimal loss of observation time. Achieving a high data-taking
efficiency in a reasonably complex installation with numerous detectors and many interacting dis-
tributed software processes requires a system with a high fault-tolerance and a clear strategy for the
handling of error situations. There are paradigms for building a fault-tolerant distributed system
(e.g. by making sure in the design and testing phase that subsystems can gracefully continue in
situations where resources or other subsystems become temporarily unavailable) but it is also clear
that not all error situations can be anticipated and resolved in advance. In general, failures will
occur due to (i) a malfunctioning of the detectors that must be controlled and read out, (ii) prob-
lems with the hardware (computers, network equipment) on which the DAQ system runs, and (iii)
internal problems (bugs, inconsistencies) of the DAQ software itself. In a given error situation, it is
important to quickly identify the real cause of an error (be it a hardware or software problem) and to
distinguish it from a wealth of other possibly unrelated or secondary errors, and to take appropriate
recovery actions. Experience shows that this kind of error detection and recovery can be a chal-
lenging task for the operators of the DAQ system who often resort to a (possibly time-consuming
and not constructive) restart of the entire DAQ system. It is therefore desirable to automatically
detect error situations and to apply recovery procedures that combine the knowledge of domain
experts (e.g. detector experts, DAQ software experts).

2. Automatic Error Detection and Recovery

A software system for automatic error detection and recovery should be (i) fairly centralized,
(ii) highly configurable, (iii) capable to process different input streams (e.g. error messages and
results of the monitoring of the network hardware), and (iv) capable of executing a variety of oper-
ations to assess the situation. A certain degree of centralization is mandatory since one individual
software process that experiences an error state has often too little information about the state of
the entire system for suitable error handling. A limited, hard-coded local error handling (e.g. by
re-trying in case of connectivity problems) or attempts by several processes in an error state to
find out what is going on are in general poor remedies that can even deteriorate the situation. The
demand for high configurability derives from the fact that the error detection and recovery system
must be easily adaptable to changes in the detector & software configuration and to new informa-
tion provided by domain experts, all of which evolve over time. Of course, the system must also be
reasonably stable in order not to become a cause of trouble itself.

Knowledge-based systems are one way to approach the problem of automatic error detection
and recovery. Classic expert systems operate on known facts (e.g. the occurance of a certain error
message) and use a set of rules (the expert knowledge) to derive an inference (the classification of
the error condition and a suggested remedy). They are used in a wide range of applications but
it was realized [1] that their rather static reasoning is not well suited to the analysis of error mes-
sages that occur in connection with data acquisition and control systems. Classic expert systems
are not designed to operate in the time domain whereas in our application a lot of the information is
contained in the rate and sequence (in time) of error messages. An effective approach for the pro-

2



P
o
S
(
I
C
R
C
2
0
1
5
)
7
3
4

Complex Event Processing for Error Detection and Recovery T. Holch

cessing and classification of streams of events (i.e. error messages) is therefore the complex event
processing paradigm [2]. This technique is applied successfully in particle physics experiments [3]
and we are exploring it for arrays of imaging atmospheric cherenkov telescopes (IACTs).

3. Complex Event Processing and IACT Arrays

Complex event processing (CEP) is a general approach to the flexible and fast software-based
processing of events that occur in time. The events (e.g. stock orders, purchases in an online shop,
error messages from a DAQ system) and their properties are defined by the user of the CEP system
and fed into a so-called CEP engine. The CEP engine either assigns a timestamp to each event or
uses existing timestamps, and allows the execution of many parallel queries on streams of input
events. The queries are also defined by the user when the CEP engine is configured and can take
advantage of the event properties and the functionality (e.g. filtering, averaging, pattern matching)
provided by the CEP engine. If a certain query is successful, an associated user-supplied code is
executed and receives information about the event(s) that matched the query.

In the application of the CEP paradigm to error detection and recovery for a DAQ system
the input streams are defined by error messages as well as general log data and possibly further
monitoring information (e.g. the available disk space). The expert knowledge is given to the CEP
engine in the form of suitable queries which, when successful, would initiate error recovery actions.
These recovery actions can comprise suggestions for the DAQ operators and/or automatic execution
of recovery routines.

For the DAQ and control systems of current-generation IACT arrays (H.E.S.S., MAGIC, VER-
ITAS) automatic error detection and error recovery have not been a priority since the level of com-
plexity was limited: the number of telescopes was small (2–5) and the telescopes were within easy
reach of operators and maintenance personnel. A good data-taking efficiency could be achieved
with the help of dedicated DAQ experts advising the operators/shift crews and by a suitable docu-
mentation (e.g. in wikis) of known failure modes of the hardware and software.

The Cherenkov Telescope Array (CTA, [4]) is planned as the next-generation facility for
ground-based very high energy gamma ray astronomy. Improved flux sensitivity (in the energy
band from few 10 GeV to several 100 TeV) and angular resolution will be attained by placing
O(100) and O(20) Cherenkov telescopes on sites with an area of O(1 km2) in the southern and
northern hemisphere, respectively. The increase in the total number of telescopes, the operation
of different telescope types, more complex observation modes and the nature of CTA as an open
observatory pose a challenge for the availability and reliability of the deployed hardware and the
DAQ software. It is therefore important to explore the tooling for automatic error detection and
recovery and to assess whether it could be combined with the DAQ and control software that is
currently being developed for CTA [5].

Among the current CEP tools, the freely available Esper [6] package stands out due its perfor-
mance, its expressive language EPL (event processing language) for the notation of queries, and its
application in DAQ systems of substantial complexity [3]. Though targeting CTA in the long term
we have developed a test system for the H.E.S.S. experiment [9] to deal with the error conditions
occuring in a real astronomical installation.

3



P
o
S
(
I
C
R
C
2
0
1
5
)
7
3
4

Complex Event Processing for Error Detection and Recovery T. Holch

4. The Esper CEP Engine

Esper [6] is a Java-based CEP engine running on a Java Virtual Machine (JVM). It parses
streams of incoming events for user-defined queries and is able to initialize desired responses. The
ingredients for the setup of the CEP engine are:

• Event objects describing properties of parsed events

• Queries (called statements) defining patterns of interest in arriving events

• Listener objects coding responses to firing statements

Event objects can consist of any form of structured reoccurring information, e.g. log messages
or similar monitoring information. The current Esper CEP test setup uses a single stream of event
objects whose structure is defined by log messages with properties such as log type, sending process
and message. EPL provides several approaches to define event patterns for the construction of
search queries. To formulate such statements the events can e.g. be grouped by their parameters,
aggregation functions (e.g. mean, min, max calculations) and regular expression queries can be
applied to filter for certain event properties. There is also the option to define time- or batch-
windows which define the consideration time of an event for a search pattern. The EPL statements
can be nested in an arbitrary manner which allows a broad range of query definitions. In a listener
object the response to a pattern within the event stream is formulated in Java syntax. Therefore
the action on a firing statement can be anything from a simple printout on a terminal to a fully
automated execution of an error recovery procedure. To initialize a response for a statement one or
more listener objects are added to the statement. An example is given in Fig. 1.

EPStatement findError = cepAdmin.createEPL(

"context SortByProcess select * from

LogLine(logType=’Error’).win:time(60 sec).std:firstunique(logMsg)

where logMsg regexp ’.*Tracking.*’")

findError.addListener(new Listener.ErrorSolution())

Figure 1: Schematic example statement demonstrating EPL syntax. The statement selects logs of type
"Error" with keyword "Tracking" in the event property logMsg. To suppress multiple output only events
with a unique logMsg within one minute trigger the solution process. The context sorts the incoming events
by sending processes.

5. A Test System for H.E.S.S.

At the moment, Esper is run within a test environment of the H.E.S.S. DAQ system [7] (a
simplified emulation of the real DAQ system) which is a C++/Python-based software package that
uses CORBA for internal communication. In this test environment, Esper is implemented in a
stand-alone software package which is run as an optional process. It is initialized and terminated
by hand and does not interfere with other DAQ processes. The Esper engine is connected to the
H.E.S.S. Message-GUI via the Py4J package [8] which makes it possible to access Java code from

4



P
o
S
(
I
C
R
C
2
0
1
5
)
7
3
4

Complex Event Processing for Error Detection and Recovery T. Holch

within Python, a convenient way to transfer log data between the C++/Python-based H.E.S.S. DAQ
and the Java-based Esper CEP engine. The schematic structure of the data flow in the system is
shown in Fig. 2. The log messages arrive at the Message-GUI via a CORBA message server which
manages the communication between processes within the H.E.S.S. DAQ system. When a new
message is received, a Python function tries to update a sender object with the message parameters
via a gateway server which is provided by Py4J. This sender object then creates a new log event
and feeds it into the stream of incoming log events which are then parsed by the CEP engine.

H.E.S.S.
DAQ

System

Message
GUI

Sender
Object
(Py4J)

Log Event
Object

Esper CEP
Engine

Listener

Statement

if event
matches

statement

response
to detected

event

Figure 2: Schematic data flow between the C++/Python-based H.E.S.S. DAQ (blue) and the Java-based
Esper processes (green) in the test setup.

If a statement fires and activates a listener, the underlying response is executed. In the test
system, the response is for now limited to a printout of descriptive guidelines for the H.E.S.S. shift-
crew to recover the system from an error state. The information is gathered in a database in which
the subsystem experts provide solutions for given error scenarios. For the future it is conceivable
to allow activated listeners to execute scripts which then perform the suggested recovery steps
automatically.

Figure 3: Performance benchmark plot with processing frequency fp plotted vs. trigger fraction, the fraction
of error events in the parsed stream which trigger a response. fp is the rate at which events are parsed by
the CEP engine. Firing statements print logs in a Java-Swing-GUI (Setup A: one statement parsing for error
messages, Setup B, C, D: 5, 20, 200 statements firing on different unique error messages within a time
window). It is notable, that all setups reach a maximum processing frequency of O(800kHz) for low trigger
rates.

5



P
o
S
(
I
C
R
C
2
0
1
5
)
7
3
4

Complex Event Processing for Error Detection and Recovery T. Holch

The rate at which events can be processed and the memory consumed by Esper depend on the
listeners and statements used in a setup. As seen in Fig. 3 setup A, a system with one statement
querying for error messages and displaying these in a Java-Swing GUI, the processing rate (dual-
core processor up to 3.6GHz) is of the order of 100-800kHz depending on the rate of error mes-
sages in the parsed stream. Setup B, C, D on the other hand resemble a more application-oriented
setup of 5, 20, 200 statements respectively which parse the stream for different error messages via
regular expressions and suppressing multiple printouts within a given time window (as in Fig.1).
All four setups show a maximum processing frequency of O(800 kHz) for lower trigger rates which
shows that for the tested setups, the performance occurs to be dominated by the reaction process
initialized by the listeners rather than the number of statements. The overall performance of a sys-
tem is also given by the performance of the running JVM and can therefore be optimised by tuning
the JVM appropriately.

6. Summary and Outlook

Within the H.E.S.S. test environment, Esper has shown promising results regarding perfor-
mance, flexibility and the broad range of different constructs provided by EPL. An application
of the developed software package as a shift-support tool within the DAQ system used at the
H.E.S.S. site in Namibia is in preparation. In the first stage the tool will provide recovery in-
formation to the shifters in certain fault-states of the system. With enough practical experience
automated error recovery can be explored. This setup is viewed as a key test for applications of an
Esper CEP-engine in CTA.

References

[1] Avolio, G. et al., J. Phys.: Conf. Ser. 396 (2012) 012003.

[2] Luckham, D., Addison-Wesley, ISBN 0-201-72789-7.

[3] Kazarov, A. et al., J. Phys.: Conf. Ser. 368 (2012) 012004.

[4] Acharya, B. S. et al. [CTA Consortium], Astroparticle Physics 43 (2013) 3.

[5] Wegner, P. et al., Proceedings of ICALEPCS 2013, San Francisco (2013).

[6] http://www.espertech.com/esper/

[7] Balzer, A. et al., Astroparticle Physics 54C (2014) 67–80.

[8] http://py4j.sourceforge.net/

[9] Aharonian, F. et al. [H.E.S.S. Collaboration], Astron. Astrophys. 457 (2006) 899.

6


