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M87 is one of the closest known extragalactic very high energy (VHE, E > 100 GeV) object lo-
cated in the Virgo cluster of galaxies at a distance of 16 Mpc (z = 0.00436). It is the first radio
galaxy detected in the TeV regime, well studied from radio to X-ray energies. The structure of
its relativistic plasma jet, which is misaligned with respect to our line of sight, is spatially re-
solved in X-ray (Chandra), optical and radio (VLA/VLBA) observations. In 2005, gamma-ray
emission at TeV energies was detected for the first time in M87. The VHE gamma-ray emission
displays strong flux variability on timescales as short as a day. For more than 10 years, along with
X-ray, optical and radio bands, it has been monitored in the TeV band by imaging atmospheric
Cherenkov telescopes MAGIC, H.E.S.S and VERITAS. In 2008 and 2010, M87 underwent sev-
eral periods of TeV activities, and rapid flares with short timescale variability were detected.
MAGIC continued to monitor M87 but no major flares were detected since 2010. However, the
monitoring data set allows us to study the source in quiescent flux state. Here we present the
status of these studies using the data from the last 4 years of MAGIC observations.
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1. Introduction

Messier 87, commonly known as M87, is a giant elliptical radio galaxy of Fanaroff-Riley-
I-type (FR I, [1]) in the Virgo Cluster, located at a distance of 16 Mpc [2]. It is powered by a
super-massive black hole of (3.2± 0.9)× 109M� [3]. Its jet, which is misaligned with respect to
our line of sight, originating from the core, extends to 20” ([4]; equivalent to 2 kpc projected linear
distance) and it was the first jet ever observed [5]. It is spatially resolved in X-ray (Chandra), optical
and radio (VLA/VLBA) observations. M87 jet contains multiple features seen in radio, optical and
X-ray termed as ‘knots’. The closest feature to the nucleus is the knot ‘HST-1’, which is 0.86” (70
pc, projected) away. At X-rays, Chandra has the angular resolution to separate the two components,
showing a complex behaviour [6]. The angular resolution of gamma-ray observatories (∼0.1◦) is
too large to resolve the 20" jet. However, the observed variability can be used to constrain the size
of the emission region by requiring that the variability time scale is longer than the light travel
time through the emission region. The measured day-scale variability at very high energy (VHE,
E > 100 GeV) implies a very compact source. The outer lobs are excluded as possible sites for
VHE emission. Only close to the core or HST-1 are possible sites for this emission. Although this
information alone is not enough to reveal the emission location, the correlation between the VHE
emission and multiwavelength data in which the source is resolved provides a unique opportunity
to localize the VHE process occurring in active galactic nuclei.

The first hint of VHE γ-ray emission reported by the High-Energy-Gamma-Ray Astronomy
(HEGRA) collaboration [7], triggered extensive observations by the next generation Imaging At-
mospheric Cherenkov telescopes (IACTs). The High Energy Stereoscopic System (H.E.S.S) col-
laboration firmly established M87 as an emitter above 730 GeV and revealed flux variability on
time scales of two days in 2005, suggesting the emission region of the γ-rays being very compact,
with a dimension similar to the Schwarzschild radius of the central black hole [8].

The first reported detection of γ-ray emission from M87 by the Major Atmospheric Gamma-
Ray Imaging Cherenkov (MAGIC) happened in 2005, and results of those observation together
with 2006 and 2007 data were reported in [9]. During the flare of 2008, MAGIC detected the
source as well, observing a flux variability on time scales as short as a day [10]. For more than
10 years, along with X-ray, optical and radio bands, M87 has been monitored in the TeV band by
MAGIC, H.E.S.S and VERITAS [14, 15]. According to the available VHE gamma-ray data there
were in total three periods of high activity: 2005, 2008 and 2010. During these high TeV activities,
rapid flares with short time scale variability were detected. Since the monitoring in VHE gamma
rays is not very dense it cannot be excluded that more flaring periods took place in the last years.
No major flares were detected since 2010, however, the monitoring data set allows us to study the
source in quiescent flux state. In case of M87, most of the spectral modelling was done to interpret
high or flaring states, whereas detailed characterisation of the source’s lower emission levels is still
lacking. Thus it is important to study the quiescent or low emission state as its origin of emission
could be different from the flare, at least spread in much larger scale. Thus here we present the
status of these studies using the data from the last 4 years of MAGIC observations.
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2. Observations & Analysis

MAGIC is a stereoscopic system of two 17-m diameter IACTs situated at the Roque de los
Muchachos, on the Canary island of La Palma (28.75◦N, 17.86◦W) at a height of 2200 m above
sea level. Since the end of 2009, it has been operating in stereoscopic mode with a trigger threshold
of ∼50 GeV. During 2011 and 2012, MAGIC underwent a major upgrade in two stages. First, in
summer 2011, the readout electronics of the telescopes were upgraded and in summer 2012, the
camera of the MAGIC-I was replaced by a uniformly pixelized one, as the camera of MAGIC-
II [16]. With the new system the integral sensitivity achieved is of (0.66 ± 0.03)% of the Crab
nebula flux above 220 GeV in 50 hours at low zenith angles [17].

M87 observations were performed during December-July (visibility from La Palma) in each
year from 2012 to 2015 at zenith angles ranging from 15◦−50◦ during dark time and under Moon
light conditions. The data were taken in the so-called wobble-mode [18] alternating the pointing
direction between four sky positions at a 0.4◦ offset from the source. To evaluate the residual
background of the observation, three control regions with the same gamma-ray acceptance as the
ON region were used to estimate the residual background recorded together with the signal. After
the quality cuts, a total of 157 hrs (Table 1) of effective observation time of good data were used
for further analysis.

Data were analyzed using the standard MAGIC reconstruction software (MARS) [19]. The
recorded shower images were calibrated, cleaned and parametrized according to [21] for each tele-
scope individually. Since the Moon light increases the background signal in each pixel, data were
processed by applying an image cleaning higher than the standard one to the data. The cleaning
levels were optimized based on the percentage of pedestal events (artificial triggered events which
includes electronic noise and night sky background (NSB), without any showers) surviving the
cleaning. Monte Carlo simulations were tuned to the Moon light conditions by increasing the fluc-
tuations of pedestal baseline to mimic the effect of a higher NSB level. For the reconstruction of
the shower arrival direction the random forest regression method [22] with the implementation of
stereoscopic parameters [23] was used. The γ-hadron separation was performed using the random
forest method [24], which is based on both individual image parameters from each telescope and
stereoscopic information such as the shower impact point and the shower height maximum. En-
ergy look-up tables were used for the energy reconstruction. Further details on the stereo MAGIC
analysis can be found in [25].

3. Results

MAGIC detected M87 in every yearly campaign between 2012 and 2015. Table 1 lists the
effective observation time and significance of the VHE γ-ray signal observed from M87 between
2012 and 2015. The significance of the detection was calculated according to Li&Ma eq. 17 [26].

The daily- and monthly-binned light curves above 300 GeV are shown in Figure 1 and the
mean integral flux of each year, which was obtained by a constant fit to the monthly-binned light
curves, are reported in Table 1. Variability on different times scales was investigated. No significant
variability observed on yearly and monthly scales because the flux averages out with the days
without any signal. Hint of variability on daily scale observed in 2013 (probability for fit with
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Year Teff [h] Significance [σ ] FE>300GeV [×10−12 cm−2 s−1]
2012 38.75 5.4 1.15±0.35
2013 34.82 8.7 1.87±0.30
2014 49.88 7.2 1.48±0.22
2015 32.72 5.9 1.25±0.33

Table 1: Effective observation time, significance and mean integral flux (E > 300GeV) of the VHE γ-ray
signal observed from M87 between 2012 and 2015. The mean integral flux obtained from a constant fit to
the monthly binned light curves (Figure 1).
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Figure 1: Daily- (gray) and monthly- (blue) binned light curves from 2012 to 2015 (top to bottom). The
mean flux from a fit with constant to the monthly-binned light curves is indicated by a blue dotted line
(reported in Table 1).

constant of 0.3%), while for other years compatible with a constant flux (probability for fit with
constant > 38%). For 2013 data, assuming an additional systematic uncertainty of 11% of the
measured flux [17] we obtain probability for fit with constant of 0.9%, which still shows hint of
variability on daily scale.
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We calculate an integral flux F(E >300 GeV) for each data set using the energy spectra and
integral fluxes information on the previous data from the literature (see [9], [13]), shown in (Ta-
ble 2). The integral flux level above 300 GeV between 2012 and 2015 is the lowest observed since
2005.

Year FE>300GeV [cm−2 s−1]

2005−2007 (1.88±0.44)×10−12

2008 low state (11.0±4.4)×10−12

2008 high state (16.8±3.2)×10−12

2012−2015 (1.60±0.18)×10−12

Table 2: Comparison of the integral fluxes above 300 GeV observed between 2005 and 2007 [9], in 2008 [13]
and between 2012 and 2015 during both low and high states of the source. The integral fluxes have been
extrapolated from the simple power-law fits to the observed spectra.

4. Conclusions

MAGIC continues to monitor M87 (∼40 hrs per year) and detected the source in every yearly
campaign between 2012 and 2015. No flare was detected and no clear variability was observed
in 2012, 2014 and 2015 data on daily and monthly time scales. A hint for variability (∼3σ level)
was found in 2013 data on a daily time scale. The hint of the variability remains at a similar
significance level even when variable systematic uncertainties of the MAGIC measurements are
taken into account. The VHE γ-ray flux level above 300 GeV between 2012 and 2015 is the lowest
observed since 2005.
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