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Data from 105 days from the High Altitude Water Cherenkov Observatory (HAWC) have been

used to place a new limit on an isotropic diffuse gamma-ray population above 10 TeV. High-

energy isotropic diffuse gamma-ray emission is produced by unresolved extragalactic objects

such as active galactic nuclei, with potential contributions from interactions of high-energy cos-

mic rays with the inter-Galactic medium, or dark matter annihilation. Isotropic diffuse gamma-ray

emission has been observed up to nearly 1 TeV. Above this energy, only upper limits have been

reported. Observations or limits of the isotropic photon population above these energies are very

sensitive to local astrophysical particle production. Of particular note, we expect a photon popula-

tion to accompany the TeV-PeV astrophysical neutrino detection seen in the IceCube instrument.

Observations or limits of a photon population above this energy can point to the origin of these

neutrinos, indicating whether they are within the gamma-ray horizon or not. HAWC, with supe-

rior sensitivity to gamma rays between 100 GeV and 100 TeV, continuously observes the overhead

sky and will measure or constrain isotropic emission above 1 TeV. We present a limit above 10

TeV based on the background rejection achieved in a 105-day observation of the Crab Nebula

with HAWC. The limit will improve substantially with additional data and study.
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1. Motivation

Isotropic diffuse gamma-ray emission can arise from a number of mechanisms including un-

resolved sources, dark matter[1][2][3], or more exotic phenomena[4][5][6]. Of particular interest

are gamma-rays produced in conjunction with the TeV-PeV neutrino population reported by the

IceCube collaboration [7][8][9] which may occur in astrophysical pion production or in dark mat-

ter annihilation [10]. Charged pion production should be accompanied by neutral pion production

and these neutral pions will decay into gamma rays. If the IceCube neutrinos are from pion de-

cay, gamma rays should be produced with a similar spectrum and flux as the neutrinos [11][12].

Gamma rays above 1 TeV that originate outside the galaxy are heavily attenuated by the Extra-

Galactic Background Light (EBL). This situation creates a testable hypothesis: A photon flux at

the level of the IceCube measurement suggest that the neutrinos are produced locally, within or

near our own galaxy [13]. An absence of photons would suggest the neutrinos are produced be-

yond the gamma-ray horizon [14]. For this reason, diffuse gamma-ray observations are particularly

interesting if they reach sensitivity below the level of the IceCube astrophysical neutrino detection.

Electrons and positrons produce similar air showers to gamma rays and appear very similar in

a ground array. Cosmic-ray electrons can be accelerated by a nearby pulsar or supernova remnant,

but the electrons are isotropized by the intervening magnetic field. Electrons have been observed up

to 1 TeV by H.E.S.S. [15]. The spectrum appears to be falling very rapidly, near E−4. The cosmic-

ray electron/positron spectrum is interesting in its own right; models suggest that the cosmic-ray

electron spectrum may flatten if a nearby source is bright enough [16][17]. It may also constitute a

background to photon observation if the spectrum hardens.

The High Altitude Water Cherenkov Observatory (HAWC) is a water-Cherenkov air shower

array operating near Sierra Negra in Mexico. A key feature of the high-energy sensitivity of the

HAWC instrument is its ability to distinguish electromagnetic air showers from hadronic showers.

The 300 4.5-meter deep Water Cherenkov Detectors (WCDs) that make up the instrument are

designed for identifying the penetrating particles characteristic of hadronic air showers. HAWC

maintains this ability across its entire 20,000 m2 area.

HAWC is designed to observe localized sources of TeV photons. When observing a localized

source, the hadron background is measured from data by interpolating between “off source” ob-

servations. When looking for an isotropic population, the hadron background must be determined

a priori from simulation. HAWC’s ability to distinguish hadronic showers from electromagnetic

showers is critical. In Section 2 we present some studies of the photon/hadron rejection by looking

at the 10 TeV signal from the Crab Nebula. The hadron rejection is so good that we can improve

upon existing isotropic photon limits at ∼10 TeV without a dedicated isotropic photon analysis.

In Section 3, we show the computation of this limit. A number of analysis improvements stand to

improve our sensitivity by a factor of 100. Section 4 discusses these prospects.

HAWC cannot easily distinguish between high-energy electrons, positrons and photons. To

the extent that air showers from electrons, positrons and photons behave the same, our limits are

actually a limit on the combined flux of photons, electrons and positrons. For this analysis, we

frame the discussion in terms of gamma rays because we have not yet considered any differences

in the air showers generated by electrons or positrons. The prospects for detecting the ∼TeV

electron/positron population are discussed elsewhere in these proceedings [18].
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Figure 1: Background separation at 10 TeV with HAWC. The number of events per year is shown as a

function of the goodness-of-fit for simulated cosmic rays and gamma rays in HAWC-250. Events with

more than 85% of the available PMTs are used. The gamma rays are shown with a simulated spectrum

E2Φ(E) = 2000 ·3×10−8 GeV s−1 cm−2 sr−2, 2000 times larger than the IceCube neutrino flux.

2. Crab Studies

As the strongest steady TeV source in the sky, the Crab Nebula serves as an important bench-

mark and calibration source for TeV instruments, including HAWC. The Crab is detected in HAWC

data (in the 250-tank configuration) at 38 standard deviations in 150 days of observation [19] and

is being used to verify the pointing, stability and energy response of the HAWC instrument. We

also use the Crab to evaluate the effectiveness of our photon/hadron discrimination.

Figure 1 exhibits one photon identification variable, a goodness-of-fit measure of the HAWC

core reconstruction, described in [20]. It provides excellent separation of photons and hadrons, es-

pecially at the high energies we are using for this isotropic photon analysis. The figure corresponds

to a photon energy of more than 10 TeV. Photons characteristically have a much lower (i.e. better)

goodness-of-fit than cosmic rays, allowing us to distinguish the two.

The efficacy of the hadron rejection is shown most convincingly with real data from the instru-

ment. Figure 2 shows the region around the Crab in 105 days of data with HAWC in its 250-WCD

configuration (HAWC-250). For the treatment here, we look at the largest, highest-energy events

in HAWC, events which have at least 85% of the available PMTs seeing light. This cut restricts

the energy of photon events to roughly >10 TeV. Data are shown with a 0.45◦ top hat smoothing,

counting how many events occur within a 0.45◦-radius circle around the points shown. The left

panel of Figure 2 shows data with more than 85% of the available PMTs seeing light. The right
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Figure 2: Skymap in equatorial coordinates in the vicinity of the Crab Nebula in 105 days of data with

HAWC-250 (shown in the J2014/15 epoch). Events with more than 85% of the available PMTs have been

used. The color scale shows the number of events detected within a 0.45◦ circle around each point in the

sky. The left figure shows the region with no cuts and is completely dominated by hadronic cosmic rays.

The slight drift in rate is due to the changing acceptance of the detector, located at +19◦N latitude, for events

further from zenith. The figure on the right shows the same skymap after a strong cut which removes all but

1 in ∼104 background events. After cuts, at the location of the Crab, we observe 12 events with an expected

background of 0.81± 0.05 in this sample.

panel shows the same region of the sky with a strong cut on the core fit goodness-of-fit. The back-

ground is suppressed by about 10−4 with ∼25% efficiency for photons. At these extreme cut levels

(very large, very gamma-like events), events are very rare. We record 12 events (in the 0.45◦ bin)

from the direction of the Crab Nebula in 105 days. Using events recorded more than 1◦ from the

Crab, we estimate 0.81±0.05stat background events.

Figure 3 shows how the Crab excess depends on background rejection. We show measured

and predicted event passing rates as a function of the remaining background. The shape agrees

well between data and simulation. Because it is time consuming to simulate a full 100 days of

experimental data, the background estimate becomes statistically limited at a weaker cut than data.

Given the agreement at less-tight levels, we are confident that ∼25% gamma-ray efficiency with

only 10−4 background contamination is achievable, even at this early stage in the analysis. Stronger

rejection, and a more pure photon sample, appears possible with harder cuts.

3. Isotropic Gamma-Ray Limit

The strength of the photon/hadron rejection allows us to set a simple, robust limit on an

isotropic diffuse gamma-ray flux. Under no circumstances can an isotropic gamma-ray popula-

tion overproduce the observed off-Crab events. Furthermore, we have a bright gamma-ray source

of known flux to normalize our observations.
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Figure 3: These figures exhibit the performance of the photon/hadron discrimination described in the text.

The left panel shows the fraction of the gamma-ray signal expected and measured as a function of the fraction

of the background remaining as a cut on the core reconstruction goodness-of-fit is changed. Reasonable

cuts produce a background acceptance of 10−4 while maintaining an efficiency for gamma-rays of ∼25%.

The right panel shows the signal-to-background ratio achieved as a function of the fraction of background

remaining after cuts.
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Figure 4: Isotropic diffuse particle limits and measurements of a variety of species [9] [15] [21] [22] [23]

and an electron/positron model from [17]. Isotropic gamma-rays have been identified up to ∼ 1 TeV by the

Fermi-LAT instrument. Above 1 TeV, the most constraining limits come from the GRAPES-3 instrument (in

the 10-100 TeV range) and the CASA-MIA experiment (above 100 TeV). The early HAWC limits (shown

in red) surpass the GRAPES-3 limits in the 11-23 TeV energy.
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Consider FCrab, the point-source differential flux of the Crab at some energy. Assume we

measure S events from the Crab in some sample of time. Let us assume the isotropic diffuse

emission has the same spectral shape and is given by Φiso at the same energy as we measure

the Crab. Since the isotropic flux is normalized per unit solid angle, a small patch of sky with

solid angle Ωbin will produce as many photons as a point source with a flux ΦisoΩbin. If, in the

experiment, we record no more than B events in an Ωbin sized bin, and as long as we are looking

near enough to the Crab that the instrument response is flat, then we can say that the isotropic

population of photons can be no higher than:

Φiso ≤
FCrab

Ωbin

B

S
(3.1)

From the Crab observation in Figure 2, we recorded 12 total events at the Crab location, with a

background of 0.81±0.05 in a 0.45◦ round bin. There will be some photons from the Crab outside

our 0.45◦ bin. The bin size was chosen to maximize the statistical significance of the Crab detection

and, for a Gaussian-distributed point spread function, that optimum includes only about 70% of the

photons. Given the systematic uncertainties introduced by trying to account for these lost events, at

this early stage in the analysis, we conservatively perform the limit calculation with the assumption

that the total number of Crab events is 11.2.

At 90% confidence, we expect the true mean signal to background ratio on the Crab to be

larger than S/B=8.4. Using the H.E.S.S. fit of the differential flux of the Crab [24], we obtain the

limit 8.0×10−15 cm−2 s−1 GeV−1 sr−1 at 17 TeV. Using the HAWC-measured Crab flux yields

a similar limit. As we are still evaluating the HAWC systematic errors, we choose to anchor the

analysis on a published Crab flux for this study.

The HAWC limit is shown in Figure 4 along with a number of isotropic measurements, limits

and models for photons and other particle species. We quote a HAWC limit from ∼11-23 TeV, the

simulated energy range expected from the Crab for the cuts in this analysis.

4. Discussion and Prospects

The limit presented here is very conservative and essentially comes “for free” from the HAWC

observation of the Crab Nebula. It is not representative of what is possible with HAWC, and a

number of improvements are possible:

• HAWC data have the potential to constrain higher-energy photons, but we restrict the range

of the claimed limit to the energy range over which the Crab is detected in this analysis.

As the modeling of the instrument is better understood, this limit will be extended to lower

and higher energies. The sensitivity of HAWC at 100 TeV should be at least an order of

magnitude better than at 10 TeV.

• We make no attempt to ascribe the observed off-Crab events to hadronic cosmic-rays. This

assumption is robust, but very conservative. A stronger limit is possible if some fraction

of the remaining background can be demonstrated, through simulation, to be cosmic-ray

background. As we understand HAWC better, this will be possible and will improve the

sensitivity substantially. Note that we must have some understanding of the background a
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priori in order to make a positive detection. The analysis presented here can only yield an

upper limit.

• We choose a photon/hadron separation cut that results in a convincing Crab detection with an

excellent signal to background ratio. As we acquire more data, we will be able to cut harder

and further enhance the purity of our sample. Figure 3 suggests that more pure gamma-ray

samples are possible. This stands to further improve the results.

The first HAWC limit improves upon the current best limit in the 11-23 TeV range by the

GRAPES-3 instrument. Ultimately, we expect to achieve a limit below the level of the IceCube

diffuse neutrino flux at 10-100 TeV. HAWC is able to distinguish muons in an air shower across

essentially all of its 20,000 m2 area, more than a factor of 10 larger than CASA-MIA or GRAPES-3.

The limit presented here is formed using the background around the Crab Nebula. Strictly

speaking, this limit does not apply to any area of the sky except the immediate vicinity of the Crab.

Extending this analysis to the rest of the sky is underway.

Nevertheless, the present limit is the strongest in its energy range. With all the improvements

discussed here, future observations will provide a new unique constraint on the combined elec-

tron/positron/photon flux. Above 100 TeV, our observations may be able, in the near future, to

constrain the origin of the IceCube astrophysical neutrino population.
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