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The High Altitude Water Cherenkov (HAWC) high-energy gamma-ray observatory has recently
been completed on the slopes of the Sierra Negra volcano in central Mexico. HAWC consists
of 300 Water Cherenkov Detectors, each containing 180 m? of ultra-purified water, that cover
a total surface area of 20,000 m?. It detects and reconstructs cosmic- and gamma-ray showers
in the energy range of 100 GeV to 100 TeV. The HAWC trigger for the highest energy gammas
reaches an effective area of 10° m? but many of them are poorly reconstructed because the shower
core falls outside the array. An upgrade that increases the present fraction of well reconstructed
showers above 10 TeV by a factor of 3-4 can be done with a sparse outrigger array of small water
Cherenkov detectors that pinpoint the core position and by that improve the angular resolution
of the reconstructed showers. Such an outrigger array would be of the order of 200 small wa-
ter Cherenkov detectors of 2.5 m® placed over an area four times larger than HAWC. Detailed
simulations are being performed to optimize the layout.
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1. Introduction

Our knowledge of the gamma-ray sky has greatly been expanded by the FERMI satellite data,
but at the highest energies above 1 TeV only 161 sources are known up to date [1]. The first one cor-
responds to the observation by the Whipple observatory of the Crab supernova remnant in 1989 [2].
Most of the other sources have been discovered recently by the Imaging Atmospheric Cherenkov
(IAC) telescopes VERITAS [3], HESS [4] and MAGIC [5] (see also [6] in these proceedings ).

The gamma-ray sky at the highest energies above 10 TeV is even less well studied but is of
great interest since sources that emit gammas at these energies are most probably associated to the
PeVatrons that accelerate the high energy cosmic rays and produce the astrophysical high energy
neutrinos detected recently by IceCube [7]. Diffuse emission or extended sources at the highest
energies could be indirect signatures of dark matter [8] or of more exotic phenomena [9]. It is
therefore desirable to have a detector able to do a systematic survey of a large region of the sky
with enough sensitivity above 10 TeV.

From 2000 to 2008 the Milagro observatory [10] operated in the Jemez mountains in New
Mexico demonstrating that large area water Cherenkov detectors could be used to detect the shower
particles as they hit the ground, reconstructing them and identifying which ones originated from
gamma rays. Milagro discovered several galactic sources both point-like and extended.

HAWTC is a large aperture continuously operating observatory that scans 2/3 of the celestial
sphere each day detecting high-energy showers from gamma and cosmic rays, reconstructing their
direction and energy. Over the 10 years of planned operation, HAWC will will make a systematic
survey of galactic and extragalactic gamma-ray sources in this region, complementing the observa-
tions of HESS, VERITAS and MAGIC.

2. The HAWC Observatory

Figure 1: Photograph of some of the 300 WCDs of the HAWC observatory having each 180,000 liters of
water. A prototype of an outrigger tank of 2,500 1 is also seen.
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The HAWC observatory [11] is a second-generation water Cherenkov detector based on the
detection technique developed by Milagro. It has been built on the Sierra Negra volcano in central
Mexico at 4,100m above sea level. HAWC consists of an array of 300 closely packed cylindrical
water Cherenkov detectors (WCD) of 7.3m diameter and 4.5m high (Figure 1). They are filled with
high purity water and contain each 4 photomultipliers (PMT) anchored at the bottom. The PMTs
detect the Cherenkov light produced in the water by the arriving particles from the air showers. The
array covers an area of 20,000 m? in a tightly packed geometry.

All the signals in the PMTs are recorded using the Time over Threshold (ToT) technique to
determine both the arrival time and the amplitude of the signals without dead time. Taking data
continuously without a trigger, the digitized signals constitute a data volume of close to 500 MB/s.
This data stream is inspected by a farm of online computers which make a software event selection
to reduce the event recording rate on disk to 20 MB/s. Presently this corresponds to a 23 KHz rate
of showers having more than 28 PMTs with signals in coincidence in a 150 ns time window.

For each event the shower front is reconstructed using the arrival time of the signals of the
PMTs of the different tanks, that are measured with a time resolution better than 1ns. The shower
front is first fitted with a plane followed by a fit with the curvature corrections and shower time
spread given by the actual propagation of particles in the atmosphere. The position of the shower
core is determined by fitting a Nishimura-Kamata-Greisen (NKG) distribution to the amplitude of
the detected signals [12]. This can reliably be done if the core falls inside the array (20,000 m?
effective area) but becomes more ambiguous if the core falls outside of the array.

The gamma/hadron discrimination is performed by the topology and pulse height distribution
in the event as function of the distance to the shower core (Figure 2). This method performs better
as the energy of the gamma increases and at the highest energies the events are almost background
free.

Nevertheless there is a large fraction of showers in the trigger where the core falls outside of
the HAWC array, that leave enough information in the WCDs to do a gamma/hadron discrimina-
tion, but for which there is an ambiguity in the distance of the core position, the direction of the
shower and the shower size. To recover a large fraction of these showers specially at the highest
energies, where we are already limited by the statistics, is a desirable upgrade program for the
HAWC observatory.

3. Outrigger arrays

The Milagro instrument consisted initially of a 4000 m? pond. After 3 years of operation a
sparse outrigger array was added. This increased dramatically the sensitivity of the observatory
by being able to determine the shower core position over an area much bigger than the pond and
thereby correctly reconstructing partially detected showers.

The aim of the HAWC outrigger array is to determine the position of the shower core for
showers falling outside the HAWC WCD array and that still leave enough information in HAWC
to reconstruct the shower front and discriminate between gamma and cosmic-ray initiated showers.
This naturally limits the improvement to large energy showers above 1 TeV. The dimensions of a
high-energy shower footprint at the HAWC altitude sets a limit on the maximum outrigger radius
at which it is still efficient to deploy the small tanks. The required resolution of the shower core
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Figure 2: HAWC events of a hadronic shower (left) and an electromagnetic one (right) showing the PMT
signals on the array (top row) and as function of the distance from the shower core with the NKG fit (bottom
row).

position will dictate the density of detectors. The fact that the outriggers will be measuring particles
close to the shower core for large showers means that there will be large signals and therefore
smaller WCDs can be used.

In order to optimize the outrigger geometry, detailed Monte Carlo simulations are being per-
formed. A general outrigger geometry with 300 tanks arranged in a sunflower spiral manner is
used with CORSIKA [13] and GEANT4 [14] simulation packages. To study different sizes of the
outrigger array, any of the 300 tanks can be switched off at the event reconstruction level.

The outriggers can be chosen from different readily available commercial water tanks in Mex-
ico having water volumes of 2.5 to 3.5 m>. Different types of the inner surfaces are being simulated,
from black absorbing to white diffuse reflecting. We are also evaluating 3 and 8” PMTs both an-
chored at the bottom of the tank and looking up like in HAWC and at the top and looking down as
in Milagro outriggers and Auger.

We expect, based on our prior experience with Milagro, that an outrigger array will boost the
effective area by a factor of 3 to 4, with the largest gain above 10 TeV.

Besides the design of the small WDCs and the layout of the outrigger array geometry it is nec-
essary to define the Front End Electronics (FEE), the HV power supplies and the data acquisition
system. It is desirable to place all of them locally on the individual outrigger WDCs. The HV will
be of the DC-DC converter type. The FEE will consist of a shaper and a leading edge discriminator
to trigger the FADC converter digitizing the signal shape that is readout by a small processor and
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Figure 3: Contour lines of the terrain at the HAWC site with the HAWC array and the layout of a 300 tank
outrigger array in the geometry of a sunflower spiral.

sent via optical fibre to the main HAWC data acquisition system. We plan to use the outriggers to
test new local digital electronics systems, so the tanks can act both as an upgrade to HAWC and as
a prototype for a possible HAWC-South array [15].

4. Conclusions

An upgrade of the HAWC high-energy gamma-ray observatory with a sparse array of small
outrigger tanks is being investigated. For > 10 TeV showers HAWC has a trigger effective area that
is much larger than its physical size, but for showers where the core falls outside the array there are
ambiguities in the reconstruction between the core position, the shower angle and the shower size
or energy. An outrigger array can determine the core position for showers falling outside the main
array elevating the ambiguities and making these showers well reconstructable. A gain of 3-4 in
sensitivity for gammas above 10 TeV can be obtained over what is presently achieved.
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