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A medium-sized Schwarzchild-Couder Telescope (SCT) is being developed as a possible exten-
sion for the Cherenkov Telescope Array (CTA). The Cherenkov camera of the telescope is de-
signed to have 11328 silicon photomultiplier pixels capable of capturing high-resolution images
of air showers in the atmosphere. The combination of the large number of pixels and the high
trigger rate (> 5 kHz) expected for this telescope results in a multi-Gbps data throughput. This
sets challenging requirements on the design and performance of a data acquisition system for
processing and storing this data.

A prototype SCT (pSCT) with a partial camera containing 1600 pixels, covering a field of view
of 2.5 x 2.5 square degrees, is being assembled at the F.L.. Whipple Observatory. We present the
design and current status of the SCT data acquisition system.

The 34th International Cosmic Ray Conference,
30 July- 6 August, 2015
The Hague, The Netherlands

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:santander@nevis.columbia.edu
mailto:buckley@physics.wustl.edu
mailto:humensky@nevis.columbia.edu
mailto:muk@astro.columbia.edu

Data Acquisition System of the MST-SCT for CTA M. Santander

1. Introduction

Gamma-ray astronomy in the very-high energy range (VHE, E > 100 GeV) can be conducted
from the ground using large optical telescopes that detect the Cherenkov light emitted by gamma-
ray showers in the atmosphere. Over the last few decades, Imaging Air Cherenkov Telescope
(IACT) arrays have been used to study the TeV gamma-ray sky, unveiling more than 150 VHE
sources and enabling searches of dark matter and new physics.

The Cherenkov Telescope Array (CTA) is the next generation VHE instrument. It will consist
of two telescope arrays, one in each hemisphere, that will provide a full-sky view of the high-
energy universe with an order-of-magnitude improvement in sensitivity over the current generation
of IACT observatories. Prototype telescopes of various sizes are being designed and constructed for
CTA, with optical parameters optimized to increase the sensitivity of the array in different energy
ranges. A detailed description of CTA and its capabilities is available in [1].

The energy range between 100 GeV and 10 TeV, at the core of CTA’s sensitivity, will be cov-
ered by Medium-Sized Telescopes (MSTs) equipped with primary mirrors ~10—12 m in diameter.
The CTA-US group is working on the development of a novel type of MST based on the dual-mirror
Schwarzchild-Couder optical design.

The medium-sized Schwarzchild-Couder Telescope (SCT) [2] has a 9.6-m primary and a 5.4-
m secondary mirror that demagnify the Cherenkov images of air showers allowing for a small plate
scale covering a wide field of view of 8°. The small plate scale enables the use of small-sized and
cost-effective silicon photomultiplier (SiPM) detectors, instead of the traditional photomultiplier
tubes used in current IACTs. The small size of SiPMs allows for a higher density of photodetectors
in the focal plane, providing high-resolution shower images. The SCT camera will consist of 177
photodetection modules with 64 SiPM pixels each. These modules are arranged hierarchically into
9 subfields of 5x5 modules each that cover the full field of view of the camera. Given the optical
parameters of the SCT, each subfield will cover a field of view of 2.7° x 2.7°. More information
about the SCT camera is available in contribution [3] of these proceedings.

A prototype SCT (pSCT) equipped with a partial camera of 1600 pixels (i.e. a single subfield)
is currently under construction. The assembly and integration of the telescope at the site of the
VERITAS TACT array in the F.L. Whipple Observatory in southern Arizona, USA will begin in the
Fall of 2015.

Simulations of the SCT indicate a trigger rate of several kHz due to cosmic-ray showers. The
combination of the multi-kHz trigger rate and the large number of pixels in the camera will result
in a high data throughput that must be handled by the data acquisition system of the telescope and
transmitted elsewhere for further processing or storage. In this work we summarize the current
status of the development of the SCT data acquisition system and present a brief outline of future
plans.

2. Data acquisition electronics

The data acquisition system of the SCT (represented schematically in Fig. 1) is responsible for
transforming air-shower images viewed in the telescope focal plane into data that can be analyzed
to reconstruct the direction and energy of the primary gamma-ray photon. The detection of a
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Figure 1: Schematic representation of the SCT data acquisition system from the SiPM detectors to the
Camera Data Server (indicated here as central DACQ).
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shower begins with the collection of Cherenkov photons by the telescope which are focused onto
the camera, where they are detected by the SiPMs. A detailed description of the SiPMs is available
in Refs. [4, 5].

The signals from the SiPMs are delivered to a set of pulse-shaping preamplifiers, which send
the analog signals to the front-end electronic (FEE) modules that contain the custom-designed
TARGET Application-Specific Integrated Circuits (ASICs) [6, 7] that perform the waveform digi-
tization. The TARGET devices have a 300 MHz analog bandwidth and a programmable sampling
speed of 0.5 or 1 GSa/s. Efficient triggering is accomplished by summing adjacent image pixels
in groups of 4 inside the TARGET ASIC before feeding them to an on-chip discriminator which is
the Level-0 (LO) trigger. The 400 trigger signals from the 25 FEE modules in each camera subfield
are presented to the Field-Programmable Gate Array (FPGA) in the camera backplane (BP) that
runs the Level-1 (L1) trigger algorithm. The camera BP is described in detail in the following
subsection.

2.1 Camera backplane

The backplane electronics combine several subsystems into a single monolithic board for each
camera subfield. These functions include data acquisition, the Level-1 pattern trigger, power dis-
tribution and monitoring, housekeeping, and time synchronization and distribution.

The central data acquisition function of the backplane is to merge the 25 serial waveform data
streams from the FEE modules for an SCT subfield. Communications between the FEE electronics
and backplanes include both high-speed waveform data and commands (multiplexed using the
PGP! protocol), as well as discrete clock and handshaking signals. The TARGET-7 ASICs on
the FEE modules buffer the data in a deep analog pipeline, waiting for a trigger signal (TACK)
from the backplane. The TACK message provides the absolute event time used to look back in
this analog memory and to locate the analog memory cells corresponding to the time interval of

IThe Pretty Good Protocol (PGP) is a VHDL FPGA module developed by the SLAC group for prior ex-
periments that facilitates bi-directional transmission of framed messages over a two-wire high-speed SerDes link.
https://www.slac.stanford.edu/exp/npa/design/pgp_design.pdf
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interest, as well as to time-stamp the event with a unique number (for event building). On receipt
of a TACK message, a state machine in the FEE FPGA initiates digitization, formats and writes the
waveform data into the internal FEE FPGA FIFOs. The FEE modules act as servers waiting for
TACK messages (array trigger signals), and act as clients with respect to the backplanes, pushing
data whenever the FEE write FIFOs have data.

Synchronization of the FEE and backplane clocks is accomplished by the DIAT system (see
[8] for details) through an interface connector and precision clock distribution components on the
backplane. The backplane 125-MHz clocks are phase-locked to the common 62.5-MHz oscillator
signal from the DIAT and distributed to the FEE modules. Local counters on the backplane interpo-
late the 125-MHz clock to 1 ns. On the FEE modules, the 125-MHz (8-ns) clock is the fundamental
digital time reference, but a delay-locked 1-ns domino clock inside the TARGET ASICs is kept in
phase with the 8-ns clock to ~100 ps (much less than one sample time). The FEEs receive the
64-bit 1-ns clock in the TACK message for inclusion in the data records.

In the end, all counters and clocks on the different FEE modules and backplanes are synchro-
nized (with occasional imperative messages to correct synchronization) so that the FEE data can
be localized to 1-ns resolution with respect to the common array trigger.

The 1-ns time (encoded in the TACK message) is used as the unique identifier (inserted into
the data records by the FEE) for event building on the backplane. An event counter maintained in
the FEE FPGAs is included in the data as a redundant mechanism for event building and as a check
for lost data.

The backplane DAQ boards include FPGAs that run a server ready to receive the data through
the PGP SerDes links. Inside the backplane DAQ FPGAs, these asynchronous data streams (wrapped
in UDP packets) are unwrapped, parsed and assembled into event data by the Level-1 event builder
(a Verilog block inside the DAQ FPGA). Data are also buffered in the DAQ board to average out
the data rate and allow block transfer to the telescope data acquisition system. Several alternatives
are being considered for the physical realization of these DAQ boards. While initially we may
make use of existing open-source FPGA protoboards, we plan to make use of a board designed by
Seven Solutions? for the CHEC camera group in CTA. These boards were designed in consultation
with the Washington University group to provide signal and connector compatibility with the SCT
backplane.

Currently the boards include two 1-Gb/s Ethernet transceivers for the data link, while the
nominal design calls for a 10-Gb/s link. This modification can be implemented by the manufacturer
if necessary.

The Level-2 (L2) trigger collects L1 triggers from the backplane and provides other timing
signals required for event synchronization, event tagging, clock synchronization, and synchronous
resets. The L2 will have the trigger records from all backplanes and can issue trigger commands
based on the entire camera and force readout of all backplanes. If required, the events built in the
backplane can be zero-supressed and compressed in the backplane FPGA before transmitting them
to alleviate the load on the data links to the Camera Data Server (CDS). The Camera Data Server
is described in the next subsection.

Another major function of the backplane is to provide the command and slow control interface

Zhttp://www.sevensols.com/
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Figure 2: Backplane with Target 7 FEE module in a test setup at Washington University in St. Louis.

to a number of the camera’s electronics subsystems. UDP packets received by the DAQ FPGAs
are decoded to determine if they are commands, then directed either to the housekeeping FPGA
(an ACTEL FPGA on the backplane dedicated to slow control and monitoring), FEE modules, or
trigger FPGA. Commands can be issued to set data acquisition parameters in the FEE modules, set
trigger parameters, issue slow control commands and to read out various bits of status information.
The housekeeping FPGA controls power-up sequencing, emergency power shutdown to FEE mod-
ules, monitors currents and voltages using ADCs on the backplane, and provides an interface to a
general purpose peripherals connector.

The final function of the BP is to distribute power to the FEE and SiPM modules. Power for
the FEE PCBs and Peltier coolers is provided by an external 12 VDC power supply and distributed
by the backplane through high-current bus bars and PCB traces or segmented planes to the FEE/BP
connectors. High voltage power for the SiPMs is provided through an external (programmable)
power supply, and distributed through separate PCB traces to the FEE/BP connectors.

One backplane is being used for FEE integration and mechanical tests in Washington Univer-
sity (see Fig. 2). The FPGA code is being developed and integration with the prototype Camera
Data Server will take place before Fall 2015.

2.2 Camera Data Server

The Camera Data Server (CDS) is the computer that will receive the event data stream from
all 9 backplanes in the SCT (one in the pSCT) and will provide high-level event building and time-
stamping. The events built in the CDS will be formatted according to the specifications defined by
CTA before sending them downstream to other processing nodes for analysis or storage.

A key quantity for the selection of the CDS components is the data rate that will be received
from the telescope. The data acquisition electronics are designed to handle a single telescope
trigger rate up to 10 kHz. However, a suppression factor of at least 4 is provided by the DIAT
system, leading to an effective single-telescope trigger rate of 2.5 kHz. For a full-camera readout
size of 1.42 MB (125 bytes/pixel for 11,328 pixels) this trigger rate translates into a raw data rate
of 3.54 GB/s (28.3 Gb/s) per telescope.
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The data connection between the SCT camera and the CDS will consist of a series of optical
fiber lines. Two fiber lines from the Seven Solutions DACQ board in each of the 9 backplanes (i.e.
a total of 18 fibers) will be connected to a high-speed switch at the base of the telescope. From
there, data will be transmitted directly to the CDS located in the CTA data center using the four
10-Gb/s fiber lines allocated for each SCT in the CTA infrastructure planning. The data produced
by each telescope (28.3 Gb/s) can be transmitted over these four lines but, if additional reduction
is needed, options may be available to perform data compression, zero suppression, or waveform
integration in the camera FPGAs prior to transmission.

The camera data will be transmitted to the CDS as UDP packets that will contain the event
waveforms. Each waveform has 60 samples with 2 bytes per sample and a 5-byte header. The size
of the UDP packet will be determined in throughput studies of the CDS software, currently under
development. Upon arrival at the CDS, each UDP packet is parsed and a partial event is assembled
based on the information contained in the packet. These event fragments are indexed according
to their global event number and put in a buffer to wait for the arrival of all event fragments from
different backplanes. The ordering of the fragments in the buffer follows the time of their arrival at
the CDS. The depth of this buffer is approximately 0.5 seconds, which at the expected SCT trigger
rate results in a buffer size of 1.8 GB.

A separate thread will be in charge of building complete events from the fragments stored in
the memory buffer. After a certain time, the first (i.e. the oldest) fragment in the buffer is selected
and its global event number is used to scan the buffer for all fragments that correspond to the
same event. The complete event is put in a second buffer to await transmission or storage and the
event fragments are removed from the first buffer. The format for transmitting camera events to the
central CTA data acquisition system to form array-level events is currently being defined. One of
the possible ways to transmit this data is by making use of the Protocol Buffers serialization library
from Google 3. For the pSCT, we expect to use the VERITAS format for data storage to allow
merging the data from the telescope with that taken at the same time with the VERITAS array. This
will enable the study of stereo events and the validation of the pSCT performance.

For the prototype CDS, we plan to use the Dell PowerEdge R730xd rack server which is being
considered for other camera servers as a cost-effective solution that provides good flexibility for
different server configurations.

The data acquisition system will be integrated into the CTA array control system with well-
defined interfaces to the common data and control flow. For the local command and control system,
we assume a virtual bus architecture implemented with a separate 1-Gb/s network, based on a
publish/subscribe design philosophy. Individual camera systems will each have a server with an
Ethernet interface that allows the receipt of commands to change settings, and can publish house-
keeping telemetry. Client computers can subscribe to the telemetry (and can provide graphical
monitoring for individual systems, an entire camera, or the CTA array) and can (through the use
of a lock mechanism) take over control of the command link to the subsystems. The command
computer that issues commands (and subscribes to telemetry) may be a local computer system or
central system that is part of the observatory.

3https://developers.google.com/protocol-buffers/
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3. Future plans

After the ongoing backplane tests in Washington University, work will concentrate on software
development for the camera server and its integration with the backplane. Throughput tests are
planned for the camera server software to optimize the size of the UDP packets and buffers and
to test the performance of the VERITAS file format for pSCT data storage. The software and
hardware components of the DAQ system will be available for the tests and final installation of the
prototype SCT at the VERITAS site, which will take place in Fall 2015.
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