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The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is located at an altitude
of 4100 meters in Sierra Negra, Puebla, Mexico. HAWC is an air shower array of 300 water
Cherenkov detectors (WCD’s), each with 4 photomultiplier tubes (PMTs). Because the obser-
vatory is sensitive to air showers produced by cosmic rays and gamma rays, one of the main
tasks in the analysis of gamma-ray sources is gamma/hadron separation for the suppression of the
cosmic-ray background. Currently, HAWC uses a method called compactness for the separation.
This method divides the data into 10 bins that depend on the number of PMTs in each event, and
each bin has its own value cut. In this work we present a new method which depends contin-
uously on the number of PMTs in the event instead of binning, and therefore uses a single cut
for gamma/hadron separation. The method uses a Feedforward Multilayer Perceptron net (MLP)
fed with five characteristics of the air shower to create a single output value. We used simu-
lated cosmic-ray and gamma-ray events to find the optimal cut and then applied the technique to
data from the Crab Nebula. This new method is tuned on MC and predicts better gamma/hadron
separation than the existing one. Preliminary tests on the Crab data are consistent with such an
improvement, but in future work it needs to be compared with the full implementation of com-

pactness with selection criteria tuned for each of the data bins.
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1. Introduction

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is composed of 300 water
Cherenkov detector (WCD). On the bottom of each WCD there are 4 photomultiplier tubes (PMTs)
that detect the Cherenkov light. This light is produced by secondary particles in air shower gen-
erated by the interaction between atmosphere and primary particle (as for example gammas rays,
protons, among other particles). The rate of cosmic rays (CR) is bigger than the gamma rays (GR)
so it is critical to find a technique to remove the CR without losing the signals of GR.

Currently, HAWC has a method called compactness for distinguishing those primary particles.
For doing this, the data is divided into 10 bins (see Table 1) depending on nHit, that is the number
of PMTs that have a signal in the event. The compactness depends upon the charge distribution de-
posited by the secondary particles of the shower on PMTs of the array. In this work, a new method
is presented, using a Neural Network (NN) for the gamma/hadron separation without dividing the
data into bins. Five characteristics are computed for feeding a NN that computes a value (Oyy) to
distinguish between CR and GR. Another method in development can be found in [1].

2. Training stage

The NN used in this work is a Feedforward Multilayer Perceptron [2]. For a correct evaluation,
the NN must pass two stages, training and testing. In the training stage the aim is to minimize the
classification error. First, the values of characteristic input are calculated and a training MC data set
is selected. The architecture is defined as 5-5-5-1 (Figure 1a), the first layer has 5 neurons because
the NN need 5 characteristics as input', one neuron in the last layer because the network needs to
recognize only two types of particle. Different architectures of NN were tested but the learning
curves were similar. In the use of NN the recommended number of total layers should be N — 1
where N is the number of input variables [3], in our case N =5 so the simple structure (5-5-5-1)
was chosen to save computing time. The learning method used was stochastic minimization and
took 500 epochs for a asymptotic behavior in the error of the output.

In Figure 1b is shown the histogram of the output for the NN. The majority of the events produced
by GR are close to value 1 and CR to 0. Finding the optimal cut in this variable will allow us to
separate between different types of primary particles. This threshold value is defined as Oyy.

The Q factor is defined as €amma / \/Ehadron Where Egumma is the fraction of gamma events
that are classified correctly, also called gamma efficiency, and €,,4,0, is the hadron events that are
classified as gamma events, also called hadron efficiency. The Q value estimates the factor by
which the significance will be increased by the classification. Figure 2a shows the Q factor and
the Oyy value, where it can be seen that the highest value of Q corresponds to a value around
Ovn = 0.98. The receiver operating characteristic (ROC) curve is useful for comparing classifiers
and visualizing their performance [4]. From the ROC curve we can see that by using Oyy = 0.96
we increase the gamma efficiency, even if we have a bit lower Q Factor with this cut (see Table 2).

IEach input is normalized with respect to maximum value of each feature.
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bin | nHit min | nHit max | 6,
-1 30 54 -
0 55 87 4.6
1 88 138 6.3
2 139 216 9.8
3 217 323 12.7
4 324 457 17.6
5 458 606 19.5
6 607 754 18.5
7 755 889 17.1
8 890 1000 15.0
9 1001 1200 12.4

Table 1: nHit range and gamma/hadron cut in each bin for HAWC-300, 6. is the compactness cut value.
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Figure 1: In (a) is shown the architecture of NN with 5 neurons as inputs, two hidden layers with 5 neurons

and one neuron as output. The width of each connection line between neurons is proportional to the weight

of the NN. In (b) is shown the outputs of the NN for gammas and hadrons in the learning stage. The majority

of gamma events have an output close to one, and protons are close to 0.

2.1 Choice of characteristic inputs

The main idea is to use the morphological differences of the charge distribution in the PMTs for

the two type of primary particles. In event produced by gammas the PMTs close to the core of

the shower have the biggest signals and the charge distribution is characterized by a compact and
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Figure 2: In (a) is shown the Q Factor of NN’s outputs. The largest Q factor is at 4.76 when the output
threshold is around 0.98. In (b) are shown the ROC for the NN. The Oyy corresponding to the Egumma
between 0.6 and 0.7 could been used, at a loss of some Q value.

ENN | €gamma | €hadron Q Factor
094 | 0.713 | 0.028 4.309

0.96 | 0.666 | 0.024 4.424
0.98 | 0.604 | 0.019 4761
1.00 | 0.495 | 0.011 4.160
1.02 | 0.306 | 0.005 2.787

Table 2: Values for gamma and hadron efficiency close to the maximum value of Q factor. Here, for
completeness, we include the bin -1 from Table 1, even thought the bin is not used in the compactness

analysis.

smooth profile. But in the case of hadrons, PMTs with high charge can be far away from the core
and the charge distribution is not compact.

e The first feature we include is the number of PMTs with at least one photoelectron (PE)
because it is directly related to the energy of the primary. We need our NN to distinguish
independently of the energy of the CR or GR. This replaces the nHit binning used with the
compactness cut (P1=nHit).

e DisMax (P2) that is the largest distance between any of the pair of tubes passing the next
selection: first all the PMTs in the event are sorted by their PEs detected and we summed this
value for each PMT from higher to lower until the sum is less that (SumPE —MaxPE)k(nHit),
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where MaxPE is the number of PEs in any PMT in the event, and "k" is a factor that depends
linearly of nHit, the PMTs involved in that sum are the selected ones. This input involves the
distance of the PMTs with biggest charge detected and its distance because we suppose that
for gammas all the PMTs with high PE are neighbors and this DisMax should be small.

e P3 this feature is associated with the integral of the radial density where the hadron shower
dominates gamma shower [5] defined as:

LOgm(%) where Rpg, > 30 m

Here PE; is the charge in the PMT;, Rpg, is the distance in meters between the PMT; and
position of the reconstructed shower center (core).

e P4 is defined as CxPE3y/MaxPE, where CxPE3 is the maximum charge outside a exclusion
radius of 30 m in the event. For protons one expects to often see charge localized high charge
deposition far from the core, so P4 can approach 1 for protons. On the other hand, gammas
usually have a value near 0 because most of their charge is deposited near the core.

e PS5 is related to the difference between the maximum charge outside and inside the exclusion
radius weighted with the distance to the core.

P5 = Log10(|CxPE3 * Rexpisy — PEmaxint * RpE,,... )

where Rcxpg,, > 30 m and Rpg < 30m

maxint

2.2 Training data set

The simulated events were generated by using CORSIKA program in the energy range [0.005,100]
TeV with a flat spectrum and zenith angle [0,75]°. The performance and response of the array were
computed using the HAWC official software.

For the training stage, the network need two data sets, one for gamma and other for hadron. We
defined a target value of 1 for gamma ray event and O for hadron event. In this work we only use
protons as hadrons because protons constitute nearly 99% of the CR. The conditions for selecting
training the events for each set are:

o The event is well reconstructed.
o The difference between the core reconstruction and simulation does exceed 5 m.

e The core falls inside the HAWC array

o Event with nHit between 30 and 1200.
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Figure 3: The Q factor is calculated for each bin and the total (bin 0 to 9) with Oyy = 0.96. This shows that
for the Q factor in some bins, the NN is better than compactness but for others does not. Using the total bin

we got 60% and 53% in gamma efficiency for NN and compactness respectively.

3. Testing stage

3.1 Simulation

In this stage we use the same criteria described above for selecting the events for the training
data set which consists of new simulated events independent of the training set. For comparing
the two methods we use events with 55 < nHit < 1200, that correspond to bin 0 up to bin 9,
i.e. we are not using the bin —1. In this comparison we will simply weight all events equally,
without the optimal weighting for events in each bin used in [6] the Crab analysis. However, we
do apply the compactness cuts of Table 1 for each nHit bin to compare performance of the NN and
compactness. The bin called "total" is computed using all events from bin O to bin 9. The results
are shown in Figure 3 where we can see that for the Q Factor the NN has a better result than using
the compactness method.

The total value of Q Factor , gamma efficiency and hadron efficiency of each separation methods
(compactness and NN) is shown in the Table 3. The NN improves on the compactness method.
The gamma efficiency increased by 13% and the hadron efficiency decreased 30%, so the Q factor
increased by 35%.

3.2 Data

Another way to compare the different performance of the compactness and the NN is using
HAWC data. We chose a set of well reconstructed events within £6° of the Crab Nebula. We have
two methods (NKG and Gauss) for reconstructing the core position, but only Gauss was used in
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Parameter NN | compactness | Increase (%)

Q Factor 4.663 3432 35.889
gamma efficiency | 0.606 0.536 13.129
hadron efficiency | 0.017 0.024 -30.693

Table 3: Difference between methods with simulation.

6. NKG | Gauss
10.0 | 3.4706 | 4.4649
12.0 | 4.3142 | 4.4703
14.0 | 5.2777 | 4.6895
16.0 | 3.9327 | 4.3406
18.0 | 4.3170 | 4.3613

Table 4: Significance using the compactness variable with a single cut value for all bins.

Ovy | NKG | Gauss
0.92 | 5.8842 | 4.9889
0.94 | 5.7042 | 5.4144
0.96 | 5.9217 | 5.5096
0.98 | 3.7534 | 4.6703
1.00 | 4.0977 | 3.1792

Table 5: Significance using NN Vs NN threshold.

training the NN. A well-behaved event should have a similar core position for either method. In
the case of using compactness we use a very simple analysis [7] and apply a cut of 6, that varies
from 10 to 18 but is applied to all nHit bins. For technical reasons we were not able to apply the
bin-dependent cuts of Table 1 to the Crab data, so this constitutes a preliminary comparison of NN
and compactness on the Crab data. The results are shown in Table 4. In the case of NN method,
the maps are obtained by varying Oyy from 0.92 to 1.0 (see Table 5).

The highest values of significance from Tables 4 and 5 are placed in Table 6 and the increase
with respect to the compactness method is computed. The results show that the NN is better than
compactness in this preliminary comparison, consistent with expectations from MC. With the NKG
method, the increase is 12 %, and with Gauss method is 17 %, not surprising since the NN learnt
with events whose core reconstruction was done with Gauss method.

4. Conclusion

In this work, we propose a new method for gamma/hadron separation that used a Multilayer
Perceptron fed with 5 characteristics. The NN’s output is continuous and has a value targeting 1
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Method NKG | Gauss
compactness | 5.2777 | 4.6895
NN 5.9217 | 5.5096
Increase (%) | 12.202 | 17.488

Table 6: Difference between methods with data.

for gamma events and O for hadron events. In the analysis, we found an optimal cut value for the
NN output Oyy = 0.96. With this value the NN has better performance than compactness. The
Q Factor increases approximately 36%, because the gamma efficiency increased about 13% and a
decrease of 30% in hadron efficiency.

In the case of Crab data we also obtained a better significance using NN instead of a simplified
version of compactness where the compactness cut was constrained to be the same for all nHit bins.
In future work we will compare with the full compactness implementation.
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