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The Hagedorn exponential mass spectrum with slope 1/TH was erroneously interpreted as fixing 

an upper limiting temperature TH that the system can achieve.  To the contrary, such spectrum 

indicates a 1
st
 order phase transition at a fixed temperature TH.  A much lower energy example is 

the log linear level nuclear density below the neutron binding energy that prevails throughout 

the nuclear chart.  We show that, for non-magic nuclei, such linearity implies a 1
st
 order phase 

transition from the pairing superfluid to an ideal gas of quasi particles. 
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1. Introduction 

The hadronic mass spectrum shows an exponential dependence that was studied and 

interpreted by Hagedorn with its bootstrap model 
1,2

.  Several other models ( and analogies) 

were suggested. Most were based on the combinatorics of self similar aggregation: of these we 

report the Fibonacci series as an example Other used the Euler partition applied to relativistic 

rotating strings which follow strict Regge trajectories.  Finally the Bag Model
3
 in its original 

form gives a straightforward exponential mass spectrum (fig.1). 

 

 

 

 

Fig.1:Experimental and theoretical examples of the Hagedorn spectra: a) An example of the hadronic 

Hagedorn spectrum; b) The Fibonacci sequence : an elementary example of a bootstrap model; c) The 

Regge trajectory of a rotating relativistic string; c) The Bag Model.  

 

These explanations advanced over many decades justified the use of such a spectrum to obtain 

the partition function as follows:  

Let us consider a system A with a spectrum  

AT
E

eE )(  
Thermodynamically this is a thermostat with temperature TA.  The level density, or spectrum, is 

exponential in E and depends only on the intrinsic “parameter” TA.  Let us calculate the partition 

function of A: 
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This seems to indicate that A can assume any temperature 0≤T<TA. This violates 

thermodynamics, which requires that the only temperature possible for A is TA. What is the 

trouble? 

Let us consider two systems A, B with level densities ρA and ρB.  Let the systems be thermally 

coupled to each other with total energy E. We now calculate the distribution in energies between 

the two systems
4
, 

 

Let A be a “thermostat”, i.e. AT

A e


  .  Then 

 
Let us integrate over x 

 
This is the thermodynamic justification of the partition function Z B(TA) and the meaning of 

“implicit” thermostat. By changing “thermostat” we can change T A and the temperature of B. 

Thus, every time we construct a partition function, we imply the gedanken experiment of 

connecting the system to a thermostat, and that this experiment is actually possible for the 

system we are studying. Does this always work? 

To see this, let us look for the most probable value of the distribution ρT (x), which defines the 

equilibrium partition, by taking the log and differentiating: 

 
For this to be possible, it is necessary that ρA and ρB admit the same logarithmic derivative 

somewhere in the allowed range of energy x (see Fig. 2).  

Usually, and always for concave functions, S(x) = lnρ(x) and 
1)(  xST is such 

that 0 ≤T ≤ . Thus, for such systems it is possible to match derivatives for whatever value of 

E. Thermal equilibrium is achievable over a broad range of temperatures.  

However, if SA(E) = lnρA(E) is linear in E, then 
1)(  ESTA  is a constant, independent of 

E.  In this case, it is up to B to look for the value of x at which its logarithmic derivative 

matches 1/TA. The system A is a “thermostat” at T = TA and B can only try to assume the value 

T = TB = TA, if it can do so. 

Now suppose that also SB(E) = lnρB(E) is linear in E with an inverse slope TB. This means that 

only if TA = TB is equilibrium possible, and the partition function of B, Z B is meaningfully 

defined only for T = TB and not for 0≤T ≤TB. We cannot force a temperature T ≠TB on a 

thermostat.  It can only have its own intrinsic temperature TB.  These arguments are summarized 

graphically in Fig. 2.  Placing systems A and B into contact will lead to a continuous heat flow 

from one system to the other. Thermal equilibrium is not achievable. 
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Summarizing: it is permissible to calculate a system’s partition function only if its S(E) admits 

as inverse derivative value such as we want to impose through our Laplace transform. Failing 

that, the resulting partition function does not satisfy any thermodynamic criterion. 

 
 

The failure to realize that the constant temperature TH in the Hagedorn spectrum is the one 

and only temperature that the system admits and that such a constant temperature represents the 

strongest possible microcanonical signal of a 1
st
 order phase transition has led to the search over 

many decades of alternative and possible questionable signals for the expected phase transition.  

From this analysis this much can be said: 

1. If the mass spectrum is truly exponential it indicates a strong 1
st
 order phase 

transition ( probably hadronic to partonic)  

2. All the physics of the transition is encoded in the very temperature TH . Its value, 

near the pion mass is suggestive indeed. 

2 The little Hagedorn: first order phase transition in very low energy nuclei. 

For atomic nuclei away from closed shells and at low excitation ener-gies, the pairing 

force is the dominant two-body residual interaction and plays a major role together with the one-

body shell-model component (the single-particle term). The presence of a gap and the 

compression of the quasiparticle spectrum compared to the one-body single-particle spectrum 

are of major importance in this discussion. For conventional superconductors, the standard BCS 

pairing description predicts a critical temperature/angular momentum at which the 

superconducting phase reverts to the normal one through a second-order phase transition.  On 

the other hand, first-order phase transitions can arise from the BCS Hamiltonian under specific 

circumstances, as demonstrated in Ref.
5
. 
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In this section, we show that a first-order, rather than a second-order, phase transition is 

dramatically evident in experimental nuclear level densities below neutron threshold, and that 

this first-order transition is, in most nuclei, indisputably related to the presence of an energy gap 

in the quasiparticle spectrum. 

 

 2.1 The experimental evidence. 

A large body of high-quality nuclear level-density data are now available in 

literature
6,7,8

. The stunning, common feature of their level densities, particularly evident for 

deformed, midshell nuclei, is the linear dependence of their logarithm with excitation 

energy. Above ≈ 2∆0, where ∆0 is the pair-gap parameter, and up to about the neutron 

separation energy, they are well described by the constant-temperature expression proposed 

by Ericson
9
, and Gilbert and Cameron

10
: 

 
where E is the excitation energy and T is the constant nuclear temperature. 

They found this expression to be in good agreement with the cumulative number of levels at low 

excitation energy, but did not provide any fundamental, quantitative explanation for this 

relation.  Moreover, the constant-temperature expression is in striking contrast to the expected 

Fermi-gas behavior as first outlined by Bethe
11

, predicting a square-root dependence of the level 

density with excitation energy: 

 
where a is the level-density parameter.  

This experimental linear dependence of the entropy 

)(ln)( EES 
  

as given by Eq. (1) is the microcanonical hallmark of first-order phase transitions. Surprisingly, 

we may have been staring at the biggest signal yet of such a transition without seeing it. This 

transition is, at least for nuclei well away from closed shells, clearly related to pairing. If we, 

provisionally, take the constant temperature of the experimental level-density spectrum to be the 

BCS critical temperature, then, according to the well-known BCS relation 

  
we can extract the gap parameter ∆0 and compare it directly with that obtained from even-odd 

mass differences represented in the liquid-drop term  

 

For a wide range of mass number A, the resulting relationship between mass number and 

temperature using Eq. 4 is shown in Fig. 3, where the experimental constant temperatures TCT 

are taken from Refs.
12

 
,13,14

.  



P
o
S
(
B
o
r
m
i
o
2
0
1
5
)
0
5
8

Title (or short title) Author(s) 

6 

 

The close agreement in magnitude and trend is remarkable for A > 100 and away from closed 

shells, although the assimilation of the constant level-density temperature characteristic of a 

first-order transition to a critical temperature associated with a second-order transition remains 

to be explained. As a consequence of this observation, given the even-odd mass difference, we 

can predict the low-energy nuclear level densities throughout the nuclear chart for regions away 

from magic proton/neutron numbers. Before we embark on the explanation of this remarkable 

feature, let us consider another striking experimental observation: the level densities of 

neighboring even-even and odd-A nuclei have nearly identical slopes, as seen in Fig. 4  showing 

data from the rare-earth region
15,16,17,18

, and several actinides 
19,7
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Therefore, the level densities of neighboring isotopes can be made to overlap by means of a 

horizontal shift along the excitation energy axis (see Fig. 5 and Ref. 
20

). The resulting shift is 

constant with energy and in very good agreement with the even-odd mass difference; seeTable 

1. As a consequence, locally, for any given pair of even-even and odd-A nuclei, we can calculate 

the common slope of the two level densities directly from the observed excitation-energy shift. 
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Equally intriguing is the vertical shift between the even-even-odd-A nuclear level densities, 

bringing the lower even-even level density on top of the higher odd-A one (see Fig. 5 and Ref.
12

. 

This difference in entropy, approximately constant throughout the energy range, can be 

interpreted as the entropy carried by the extra quasiparticle 
12

. This experimental evidence alone 

thus suggests that as the system is excited, quasi-particles are created with a constant energy 

cost and carrying a constant amount of entropy, see Table 1. This theory-independent 

observation is a clear signature of a first-order phase transition, from a superfluid phase to an 

ideal gas of quasiparticles. 

 

 

 3  The consistency with the BCS Hamiltonian  

Now we proceed to show that all these features are consistent with the BCS theory, with 

due caution for the microcanonical/canonical language. For a set of uniformly spaced single-

particle levels, at the critical temperature the excitation energy is given by 
5
 

 

with g equal to the density of doubly degenerate single-particle states. The most probable 

number of quasiparticles QCr at TCr is
5 
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By taking the ratio of these two quantities and utilizing Eq. (3), we obtain the average cost per 

created quasiparticle up to Tcr to be 

 

This is an exact and very surprising result. Within the BCS theory, we know that at T = 0 the 

quasiparticle energy is ≈∆0, and that ∆ decreases with increasing temperature, so that ∆ = 0 at 

Tcr.  

So, how is it then possible for the energy per quasiparticle to be constant in this excitation-

energy range? The explanation lies mostly in the structur of the quasiparticle energy, which 

reads 

 

where εk and λ are the single-particle energy and chemical potential, respectively.  As the 

temperature increases, ∆ does indeed decrease, but within the uniform-spacing model this can be 

compensated by the increase of the average value of εk -λ as εk increases, and by the change of 

the underlying pairing field. 

 

The assimilation of T with Tcr  finds also an explanation in the BCS model. The dependence of 

the heat capacity upon temperature rises exponentially, and peaks at T = Tcr, so that essentially 

all energy is absorbed at this temperature. Thus arise the constant temperature of the spectrum 

and its closeness to the BCS Tcr . 

From the essentially constant energy cost ∆0 per quasiparticle, it follows that the entropy 

per quasiparticle is 

 

to be compared with the empirical, vertical shift as discussed above (see Tab. 1). 

Consequently, just using the energy rather than the temperature as the independent variable, we 

observe the progressive creation of quasiparticles, in number proportional to the energy, like the 
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amount of ice melted is proportional to the absorbed heat, independent of the amount of 

previously melted ice. This independence, together with the constant entropy per quasiparticle, 

gives clear evidence of a first-order phase transition. 

 Conclusions  

The resulting overall picture is that of a coexistence between an underlying superfluid phase in 

equilibrium withan ideal vapor of almost independent quasiparticles. This picture comes about 

mostly by a shift of perspective, from the canonical to microcanonical approach or from 

temperature to energy as the independent variable. Also,the experimental availability of entropy 

versus energy for even-even and odd-A or odd-odd nuclei allows one to observe the very 

pictorial feature of gap superconductors and gap-less superconductors in mesoscopic systems. 

We expect these features and their interpretation to be very relevant for other mesoscopic 

systems, such as hadronic systems and superconductive clusters differing by just one electron. 
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