
P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker

Giulio Eulisse
CERN
E-mail: Giulio.Eulisse@cern.ch

Tommaso Boccali
INFN-Pisa
E-mail: Tommaso.Boccali@pi.infn.it

Enrico Mazzoni
INFN-Pisa
E-mail: enrico.mazzoni@pi.infn.it

Daniele Bonacorsi∗
University of Bologna and INFN-Bologna, Italy
E-mail: daniele.bonacorsi@unibo.it

Clouds and virtualisation offer typical answers to the needs of large-scale computing centres to
satisfy diverse sets of user communities in terms of architecture, OS, etc. On the other hand, so-
lutions like Docker seems to emerge as a way to rely on Linux kernel capabilities to package only
the applications and the development environment needed by the users, thus solving several re-
source management issues related to cloud-like solutions. In this paper, an exploratory work done
based on the workflows of the CMS experiment at the LHC accelerator at CERN is presented.
Progresses towards the deployment of a full data center via exploiting container-ised software
stacks for CMS will be reported and discussed.

International Symposium on Grids and Clouds (ISGC) 2015,
15 -20 March 2015
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:Giulio.Eulisse@cern.ch
mailto:Tommaso.Boccali@pi.infn.it
mailto:enrico.mazzoni@pi.infn.it
mailto:daniele.bonacorsi@unibo.it

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker Daniele Bonacorsi

1. Introduction

Docker [1] is an open platform to build, ship and run distributed applications. It is a container-
based virtualisation framework that uses Linux containers (LXC) as the core technology, with a
large set of tools allowing for large scale container handling, shipping and deployment. It allows
for easy container contextualization, and for inter-container communications. Docker utilisation is
becoming the de-facto standard for container based virtualisation, and is the recommended solution
endorsed by most heavy weight IT providers. Some examples are Spotify, that uses Docker for
continuous delivery, service testing and deployment; Baidu, that uses Docker as a Platform-as-a-
Service (PaaS), profiting of its flexibility for many framework and applications; eBay, that uses
Docker for its easy application deployment, and for continuous integration process; and many
more. Recently, Docker has reached 120k lines of code, about 10k commits and roughy 600 core
contributors, of which about 95% work outside Docker.

2. Docker as a tool for light virtualisation

Virtualisation can be achieved in several ways, depending on the desired (or acceptable) level
of invasiveness. Setting aside solutions when the whole system hardware is emulated (like QEMU),
the industry reference technologies are full system virtualisation (OpenStack [2], OpenNebula [3]),
where each virtualised machine has its own running kernel, and kernel based process isolation,
which has been a possibility in Linux since the beginning, via chroot, and more recently via c-
groups and projects like the Linux Container (LXC [4]). The former technology has a broader
scope, being able to utilize different operating systems on the same physical host (e.g. mixing
Windows and Linux machines), but pays a price in terms of resource utilisation (mainly RAM, to
a smaller extent CPU reduced efficiency) and access to high performance devices; it is considered
an overkill in our field, where more or less all the scientific computation are carried out on Linux
machines. Linux Containers, at the heart of the Docker technology, instead of simulating complete
machines, just provede process separation and sand-boxing over a common kernel all the machines
share. This is particularly adequate in an environment where system standardisation has already
been achieved to a large extent, for example by the adoption of WLCG-provided Middleware.
Docker provides CPU, memory and filesystem isolation, and can run different processes on the
same kernel but with completely different runtime (e.g. one can run SLC5 on SLC6 or on Ubuntu).

Docker adds on top of LXC a complete series of tools for image storing, deployment, testing
and contextualisation, as well as for container handling (start/stop/...) and communications; derived
images can be based on exiting images, with Docker taking care to save only the deltas between
them. It also add a public repository (Docker Hub, hub.docker.com), which allows for safe
image storing and easy deployment for open software projects, which provides already cooked
images for most of the widespread linux based operating systems.

Currently Docker Hub hosts about 45k publicly accessible images, and starting a new container
on a linux based machine is as easy as a single line command:

$ docker run -it centos:centos7 cat /etc/redhat-release

CentOS Linux release 7.0.1406 (Core)

2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker Daniele Bonacorsi

The images can be built using so called “Dockerfiles”, e.g.:

FROM cmssw/slc6-vanilla

RUN yum -y update && yum -y install rubygems ruby-devel \

gcc ruby193

RUN echo "gem: --no-ri --no-rdoc" > ~/.gemrc && \

gem install puppet && \

gem install librarian-puppet -v 1.0.9

CMD /bin/bash

All images are layered, there is no need to re-download previously downloaded layers (e.g. each
of the above statements is a layer). Several CMS examples are documented [10].

Additionally, it is relatively straightforward to set-up Docker on one’s own operating system
of choice. Docker comes pre-packaged on most modern distributions, including slc6:

sudo yum install docker-io

sudo service docker start

The test set-up (used for most tests reported in this paper) consists of 2 socket Intel(R) Xeon(R)
CPU E5-2630L 0 2.00GHz (12 real cores, 24 with HT); 2 GHz, 16 MB Cache, Rotating disks; Real
HW, no hypervisor, Docker running directly on top of slc6. On the other hand, for Mac/Windows
users an interesting option is boot2docker.io: it provides a VirtualBox environment and wrappers
which make it look like a native setup. A lightweight Linux distribution based on Tiny Core Linux
made specifically to run Docker containers is used; it runs completely from RAM, weighs 27MB
and boots in few seconds.

3. Examples of CMS applications

As stated in the previous section, several CMS examples are documented [10]. One of these is
particularly interesting and will be discussed briefly. “ParFullCMS” [11] is a parametrised Geant4-
based geometric description of the CMS detector. It is mainly used for benchmarking (e.g. it is
being used to do realistic tests of CMS software on ARM). It can be installed from the CMS apt
repository, and running it is as easy as:

docker run -e EVENTS=2400 -v $PWD:/data -it cmssw/parfullcms

One can easily configure the number of events and the number of threads to use, and can run Geant4
simulation. Several tests done with ParFullCMS (3 runs, 2400 evts, 24 threads) with Docker and
on bare metal show that the time performances are comparable, the confirming that no overhead is
observed when using Docker.

Another interesting example is that one can ship the entire CMS software (CMSSW) as a
whole to the host i.e. not downloading it via CVMFS, but just ship it all from the outside. This
may become interesting to be exploited in case one wants to run a set of CMS specific tests which
are usually run for CMS releases validation, e.g.:

docker run -e WORKFLOW=25.0 -it cmssw/cmssw:CMSSW_7_3_0

3

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker Daniele Bonacorsi

Suppose e.g. that one has a brand new machine, and wants to know how fast it is for CMS work-
flows. It is sufficient to put (roughly) about 10 GB on a USB key and run a real CMSSW workflow
and measure. The 10 GB size corresponds to a release plus the necessary input files to be shipped
(any limit in the shipped size that Docker does not support out of the box can be overcome by start-
ing it with particular options). This has been tested with a CMS reconstruction workflow (ttbar
sample), and it was observed that bare metal vs Docker times are very similar, basically indistin-
guishable.

This opens the door to interesting application in terms of benchmarking. After SPEC and
SPECfp, it was soon realised that standard benchmarking was not really adequate for HEP, as a
machine benchmarked as 2x was not twice as fast for LHC typical applications (which are quite
RAM-intensive, heavy on caches, etc). HepSpec06 was hence designed in 2006 to scale as typical
LHC experiments applications. Today, this is not completely true anymore, especially in moving
to 64-bit. Docker (see previous example), might hence be the tool to offer a simple, portable way
to run a benchmark. And this could be given to hardware vendors to run realistic (and a large set,
and always up-to-date) benchmarks of CMS workflows.

4. “Dockerizing” a computing site

Virtualisation technologies are the best choice when dealing with users with diverse needs in
term of computing resources. While Linux is the de-facto standard for most scientific uses, precise
hardware and software needs can still vary to the extent of not allowing for a catch-all solution.
Software from previous generation experiment is often not validated for the latest-greatest Linux
versions, for example, and thus cannot coexist with recent experiments which instead prefer the
best performance coming with newer releases.

The CMS Pisa Tier-2 center is one of the biggest Italian scientific computing center: it is a Tier-
2 in WLCG, supporting CMS, but CMS is actually a minority part of the resources/users, which
include also LHCb and ATLAS, 20 more Virtual Organisations, a National Theoretical Physics
computing center, a 2000 (and more) cores fluido-dynamic cluster (used in industry related re-
searches). In terms of resources it consists of 8k cores, >2 PB, highly heterogeneous WN hosts
(some are 1 Gbe, some 10 Gbe, some Infiniband). Also the OS requests are heterogeneous (some
still SL5, even SL4 up to some months ago; some prefer very recent releases, generally OpenSuSe).
The only common points between such a diverse user-community are:

• GPFS [5] is used to serve data for all the use-cases supported on-site;

• AFS [6] is used for user areas;

• LSF [8] is used for resource access, also interactive.

The main issue in Pisa recently was to understand how to provision the correct environment to
all these diverse resources. Virtual Machines (e.g. OpenStack) were considered as an option, but
Pisa also has older machines which are low in RAM. Infiniband connectivity, moreover, seems to
loose performance in a completely virtualised environment. The solution identified up to recently
so far was a very light virtualisation via chroot. Every host machine (with the very latest OpenSUSE

4

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker Daniele Bonacorsi

kernel) was starting sand-boxed machines as tar files containing complete SL6 (or SLx) systems,
via chroot. Site-wide file-systems (CVMFS [7]/GPFS/AFS [6]) were mounted by the host, and then
seen by the machines as local file systems using the bind tool. Every machine had pre-installed as
many tar files as the possible environments are: these could be un-tarred and “started” on demand
via a set of scripts, basically forcing the LSF pool the machine lives in. This solution works and it
has been in production for Pisa since 3 years.

On the other hand, Docker is to be a viable solution, too. It has the same overhead (virtually
0) as chroot, and comes with the added plus of easier image storing, deployment and control.
Basically, three are the main points in favour of Docker adoption in Pisa:

• no more tar files and a complicate management;

• the adoption of a git-like image management, where every action on the repository is properly
logged, and you can branch, pull, etc;

• the very easy deployment of a local image repository, to avoid exposure of sensitive infor-
mation;

• the extremely easy conversion of an existing chroot’s tar image to a Docker image, via a
single command:

sudo tar -C ExistingChrootBaseDir -c . \

| sudo docker import - PisaWN

A Tier-2 on-demand approach was initially planned, where no dependency on the underlying
physical architecture was foreseen, but currently it has been decided to privilege ease of deployment
and performance over flexibility. Pisa decided hence to mount CVMFS/GPFS/AFS on the host and
pass them via “-v”, instead of relying on the image mounting them via userland tools like Parrot;
The solution also allows for the sharing of CVMFS/AFS caches in case of multiple machines
running, and does not force the containers to run in privileged mode, which would not be possible
in (e.g.) opportunistic sites. LSF runs within the container, and automatically connects the machine
to the proper LSF queue, with a start command as follows. All in all, a Worker Node instance is
started just via

docker run -v /cvmfs:/cvmfs -v /afs:/afs \

-v /gpfs/ddn:/gpfs/ddn \

-v /chrootlfs/home:/home/grid -d \

-t localregistry.pi.infn.it:5000/enricomazzoni/testwn:0.3 \

/etc/sysconfig/docker-pi/start

The complete workflow of operations is shown in Fig.1: admin’s action selects and starts the
appropriate container, which then joins the correct LSF queue and becomes available for processing
(via batch system and interactive).

Pisa moved about 10% of the WNs to Docker so far, following an R&D process of just a
couple of weeks. No user actually realised the difference. The rest of the centre will migrate as
well in the next few weeks. At this point, the idea would be to move all the services used by CMS
via Docker:

5

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker Daniele Bonacorsi

Figure 1: Workflow from admin’s action to a machine accessible via LSF.

• Squid: just a Linux standard machine;

• Computing Elements (CEs): one already moved without problems, starting from a chtooed
test we had;

• User Interfacess (UIs): similar to WNs, can share most of their image;

• PhEDEx (CMS transfer agents on a User Interfac): a simple modification of the latter;

• Xrootd redirectors (for CMS data federations): Pisa moved it from chroot and it is already
running now with Docker.

5. Conclusions

In summary, Docker offers interesting opportunities to CMS. It can ship entire CMSSW
distributions and do benchmarking easily. It offers plenty of desired features and flexibility at a

6

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
0
7

Containerization of CMS Applications with Docker Daniele Bonacorsi

site level, and all this at no cost in terms of performances (as from the tests done so far, at least).
The transition in itself is very easy, indeed matter of days, admittedly maybe also because Pisa
was already at chroot point - but other works in CMS show that starting from bare metal is as easy,
and Docker provides most of the specific scripts a site may need for image processing, download
history, starting, stopping. In a nutshell, Docker is a neat tool, and CMS will continue testing it
(and possibly integrating it) in its activities.

References

[1] Docker Web Site, http://www.docker.com/

[2] OpenStack, https://www.openstack.org/

[3] OpenNebula, http://opennebula.org/

[4] Linux Containers, http://en.wikipedia.org/wiki/LXC .

[5] GPFS: A Shared-Disk File System for Large Computing Clusters, Proceedings of the FAST 2002
Conference on File and Storage Technologies Monterey, California, USA January 28-30, 2002

[6] OpenAFS, http://www.openafs.org/

[7] CVMFS, http://cernvm.cern.ch/portal/filesystem

[8] LSF, http://www-03.ibm.com/systems/platformcomputing/products/lsf

[9] The Parrot Virtual File System, http://ccl.cse.nd.edu/software/parrot/

[10] CMS examples with Docker: http://github.com/cms-sw/cms-docker

[11] ParFullCMS,
https://github.com/cms-sw/cms-docker/tree/master/parfullcms

7

