
P
o
S
(
E
C
P
D
2
0
1
5
)
1
5
0

Towards real-time density profile reconstruction
with CUDA

D. R. Ferreira,a P. J. Carvalho∗,b H. Fernandes,b L. Menesesb and JET contributors†‡

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK
aInstituto Superior Técnico, Universidade de Lisboa
Campus do Taguspark, Avenida Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal

bInstituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
E-mail: pedro.carvalho@ipfn.tecnico.ulisboa.pt

Some present-day fusion diagnostics, including the reconstruction of the density profile from
reflectometry measurements, require a lot of processing power to achieve the desired results. This
processing is thus usually postponed to after the pulse and can last well beyond the starting of
the next pulse on standard tokamaks like JET or ASDEX Upgrade. With the parallel computing
capabilities of modern GPUs, it is possible to significantly shorten the time it takes to compute
the density profile, bringing it closer to the update interval of the JET real-time network. This
paper presents the implementation of profile reconstruction from X-mode Frequency-Modulated
Continuous-Wave (FMCW) reflectometry for JET’s KG10 diagnostic on an NVIDIA R© CUDA-
enabled GPU. The system can process one profile in less than 5ms, a temporal resolution that
opens the prospects of using FMCW reflectometry as a real-time diagnostic.

1st EPS conference on Plasma Diagnostics
14-17 April 2015
Frascati, Italy

∗Speaker.
†See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint

Petersburg, Russia
‡This work has been carried out within the framework of the EUROfusion Consortium and has received funding

from the Euratom research and training programme 2014-2018 under grant agreement No 633053. IST activities also
received financial support from Fundação para a Ciência e Tecnologia through project Pest-OE/SADG/LA0010/2013.
The views and opinions expressed herein do not necessarily reflect those of the European Commission.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:pedro.carvalho@ipfn.tecnico.ulisboa.pt

P
o
S
(
E
C
P
D
2
0
1
5
)
1
5
0

Towards real-time density profile reconstruction with CUDA P. J. Carvalho

1. Introduction

Frequency-modulated continuous-wave (FMCW) reflectometry is a plasma diagnostic which
can be used to determine the density profile of a magnetically confined plasma along the major ra-
dius of a tokamak. In JET, the plasma is probed from the low-field side with a series of frequencies
{ f0, f1, ..., fn} in the microwave range, including the Q-band (33–50 GHz), V-band (50–75 GHz),
W-band (75–110 GHz), and D-band (110–150 GHz). The probing frequency fi is increased to fi+1

in steps of 0.01 to 0.02 GHz, and the system is sufficiently fast to sweep the plasma in 10µs and to
provide a new sweep every 15µs, if necessary [1]. However, at such rate the generated data quickly
exceeds the amount of available memory, so the highest acquisition rates are reserved for events of
special interest. An acquisition rate of one sweep per millisecond is common.

The underlying principle of microwave reflectometry is that a probing wave of frequency fi

is reflected at a cutoff position xi inside the plasma where there is some electron density ne(xi).
While the density value ne(xi) that causes total reflection can usually be predicted from fi, the
actual cutoff position xi where such reflection occurs is unknown and must be determined based on
the roundtrip delay of the probing wave.

1.1 Finding the group delay

As the plasma is swept with a series of frequencies { f0, f1, ..., fn}, the reflectometer generates
an in-phase/quadrature (I/Q) signal [2] with time-varying amplitude and phase. With the increase
in probing frequency, the phase varies in such a way that the I/Q signal appears to oscillate at a beat
frequency which is related to the group delay τ by (see, e.g. [3]):

fbeat(fi) = τ(fi)
d f
dt

(1.1)

where d f
dt is the step increase in probing frequency per unit time.

The beat frequency fbeat(fi) can be obtained using a sliding-window approach, which consists
in applying a Short-Time Fourier Transform (STFT) to a segment of signal around fi. For this
purpose, we use a segment of 64 samples, we apply a weighting window to the segment, and we
use zero-padding to improve the FFT resolution. We compute the FFT of the zero-padded segment
and we find the point at which the FFT has its maximum. The procedure is illustrated in Figure 1.

... ...
fi

32 zeros 32 zeros64 samples

128 elements

FFT

fbeat

I/Q data

Figure 1: Computing the beat frequency for a probing frequency fi

1.2 Group delay inside the plasma region

From the beat frequency fbeat(fi) it is possible to obtain the group delay τ(fi) from Eq. (1.1).
However, such group delay includes the total propagation time, both inside and outside the plasma.

2

P
o
S
(
E
C
P
D
2
0
1
5
)
1
5
0

Towards real-time density profile reconstruction with CUDA P. J. Carvalho

Since we are interested in measuring the delay only within the plasma region, we need to subtract
the propagation time outside the plasma. Such propagation time can be determined beforehand by
probing the empty chamber with the same set of frequencies. In this case, the probing wave is
reflected on the back wall. Let fwall(fi) represent the beat frequency obtained when probing the
empty chamber. Then the roundtrip delay inside the plasma region is given by:

τ(fi) =
fbeat(fi)

d f/dt
−
(

fwall(fi)

d f/dt
− 2(R0−Rwall)

c

)
(1.2)

where R0 is the first (outermost) position where there is usually some plasma density, Rwall is the
position of the back wall,1 and c is the speed of light in vacuum.

1.3 Linearization of fwall

In practice, the measurement of both fbeat(fi) and fwall(fi) is subject to noise. In fbeat(fi) it
is hard to distinguish between noise and actual density fluctuations. However, in fwall(fi) there
should be no noise because the chamber is empty and the back wall is at a fixed position. Yet,
Figure 2 shows that while fwall(fi) follows an overall linear trend, there are some outliers that
deviate significantly from that trend. Here, least squares regression (LS) provides a poor fit; the
linear trend is best captured by a least median of squares (LMedS) [4]. For this purpose, we search
for the two points that yield a line with the best fit. An inconvenience of this method is that its time
complexity is O(k2) where k is the number of points. However, this linearization needs to be done
only once per pulse, and applies to every sweep thereafter.

1.4 Computing the density profile

To find the cutoff positions {x0,x1, ...,xn} from the group delays {τ(f0),τ(f1), ...,τ(fn)} we
use Mazzucato’s algorithm [5]. This is an iterative procedure which, at each iteration i, computes
xi based on the positions {x0,x1, ...,xi−1} from previous iterations. Due to the sequential nature of
this algorithm, it can hardly be parallelized, but it can be somewhat optimized. Our main efforts
are focused on parallelizing the computation of the beat frequencies and the linearization of fwall.
Figure 3 shows a plot of a density profile obtained from a sample sweep. For comparison, the plot
also shows the density measurements obtained via Thomson scattering [6].

40 42 44 46 48 50 52 54
fi (GHz)

80

60

40

20

0

20

40

60

80

f w
al

l (
M

H
z)

Q band

LMedS

LS

Figure 2: fwall in the Q-band

2.42.62.83.03.23.43.63.84.0
R (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n
e
 (

p
a
rt

ic
le

s/
m

3
)

1e19 pulse #86903, sweep #6019

Reflectometry

Thomson scattering

Figure 3: Density profile for a sample sweep

1In JET, R0 is usually very close to the radial outer gap (3.86 m) and the back wall is positioned at 1.78 m.

3

P
o
S
(
E
C
P
D
2
0
1
5
)
1
5
0

Towards real-time density profile reconstruction with CUDA P. J. Carvalho

2. Computing the density profile with CUDA

Modern GPUs have hundreds or even thousands of cores, so they can largely outperform the
CPU in certain parallelizable tasks. CUDA [7] is a technology introduced by NVIDIA to make the
parallel capabilities of GPUs accessible for general-purpose programming. CUDA revolves around
the idea of dividing work into a large number of independent threads. The actual work to be carried
out by each thread is programmed into a special function called a kernel. In essence, a kernel
executes on the GPU and is replicated into as many threads as necessary. Each thread has a unique
thread id which can be used to differentiate between the multiple executions of the same kernel.
Typically, a CUDA kernel operates on one or more input arrays, and writes the results to one or
more output arrays. These arrays are stored in GPU memory. The thread id is used to determine
exactly on which elements of the input and output arrays each thread will operate.

2.1 Computing the beat frequencies

To compute the beat frequencies, we use three different kernels and also the cuFFT library [8].
Figure 4 illustrates the procedure. Kernel #1 builds all the input segments for the FFT. It receives
the I/Q data for all bands in an input array and builds all the segments in an output array which
is initialized with zeros (no need for an additional zero-padding step). Each value is copied to the
output array by a separate thread, which also multiplies by the corresponding (Hanning) window
point. The output of kernel #1 is given as input to cuFFT, which runs in batch mode to compute all
FFTs on the GPU with a single call. Kernel #2 computes the magnitude of each FFT coefficient.

fbeat(fi) fbeat(fi+1)

thread thread

... ...
FFTs

... ...
fi

... ...

64 samples

8 samples

threads

64 samples

I/Q data

Segments

... ...
FFT magnitudes

...

threads

...
Beat frequencies

Kernel #1

cuFFT Library

Kernel #2

Kernel #3

cuFFT cuFFT

Figure 4: Computing the beat frequencies (CUDA version)

4

P
o
S
(
E
C
P
D
2
0
1
5
)
1
5
0

Towards real-time density profile reconstruction with CUDA P. J. Carvalho

Kernel #3 finds the beat frequency for each segment; here, each thread operates on its own segment
to find the position in that segment where the FFT has its highest peak.

2.2 Linearizing fwall

The linearization of fwall is done separately for each band, because each band has its own line
that yields the best fit. To find such line, we need to consider every pair of points (fi, fwall(fi)) and
(f j, fwall(f j)). We pass a line through those two points and compute the residues for every point.
Then we sort the residues to find the median residue for that line. The line that yields the best fit is
the one with the least median residue.

The procedure for obtaining fwall from I/Q data is the same as described in Section 2.1. To
linearize fwall we use three additional kernels and two external libraries. Figure 5 illustrates this.
Kernel #4 picks a pair of points and calculates the line parameters (slope and y-intercept) for the
line that passes through those two points. Kernel #5 calculates the residues for each point and
line. The residues for the same line are stored contiguously in a segment of the output array. Each
of these segments must be sorted to find the median residue for the corresponding line. For this
purpose, we use the Modern GPU library [9] to sort all segments at once on the GPU. Kernel #6
collects the median residue for each line and places it in an output array. Then we use the Thrust
library [10] to find the position of the least median residue in that array and. from the same position
in the array of line parameters, we retrieve the line that yields the best fit.

... ...

fi

... ...
threads

Beat (wall) frequencies

Line parameters

... ...
Probing frequencies

(a,b)

fj

fwall(fi) fwall(fj)

... ...
Residues

threads

... ...
Residues (sorted)

... ...
Medians

threads

min_element()

line of
best fit

Kernel #4

Kernel #5

Modern GPU Library

Kernel #6

Thrust Library

Segmented sort Segmented sort

Figure 5: Finding the best linear fit for fwall (CUDA version)

2.3 Results

To assess the performance of our CUDA approach, we compare it with a reference implemen-

5

P
o
S
(
E
C
P
D
2
0
1
5
)
1
5
0

Towards real-time density profile reconstruction with CUDA P. J. Carvalho

tation in C that uses the FFTW library [11]. Table 1 shows the processing time of each sweep for
both versions. The largest performance gain is observed in the linearization of fwall. But more
importantly, the reconstruction of the density profile is brought down to about 3.4ms, a time that
is now much closer to the standard update interval of 2ms in the JET real-time ATM network [12].
The additional time required for data acquisition can be pipelined with the density profile recon-
struction (i.e. the data for the next profile can be loaded while the current profile is being processed)
to yield a total processing time of under 5ms.

CPU: Intel Core i5-4690 @ 3.5 GHz
GPU: NVIDIA GeForce GTX 750 Ti SM5.0 with 640 CUDA cores @ 1137 MHz
Run time (s) C version CUDA version Performance gain
fwall linearization 1.240397 0.130477 9.5x
sweep #6019 0.011204 0.003446 3.3x
sweep #10019 0.011178 0.003402 3.3x
sweep #73185 0.011247 0.003429 3.3x

Table 1: Processing time for three sample sweeps from pulse #86903

References

[1] A. Sirinelli, B. Alper, C. Bottereau, F. Clairet, L. Cupido, J. Fessey, C. Hogben, L. Meneses,
G. Sandford, M. J. Walsh, and JET-EFDA Contributors. Multiband reflectometry system for density
profile measurement with high temporal resolution on JET tokamak. Rev. Sci. Instrum., 81(10), 2010.

[2] S. Hacquin, L. Meneses, L. Cupido, N. Cruz, L. Kokonchev, R. Prentice, and C. Gowers. Upgrade of
the X-mode reflectometry diagnostic for radial correlation measurements in the Joint European Torus.
Rev. Sci. Instrum., 75(10):3834–3836, 2004.

[3] G. Cunningham. Use of the absolute phase in frequency modulated continuous wave plasma
reflectometry. Rev. Sci. Instrum., 79(8), 2008.

[4] D. L. Massart, L. Kaufman, P. J. Rousseeuw, and A. Leroy. Least median of squares: a robust method
for outlier and model error detection in regression and calibration. Anal. Chim. Acta, 187:171–179,
1986.

[5] E. Mazzucato. Microwave reflectometry for magnetically confined plasmas. Rev. Sci. Instrum.,
69(6):2201–2217, June 1998.

[6] C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke. Recent
developments in LIDAR Thomson scattering measurements on JET. Rev. Sci. Instrum.,
66(1):471–475, 1995.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with CUDA. ACM
Queue, 6(2):40–53, 2008.

[8] NVIDIA Corporation. cuFFT library user’s guide, August 2014. http://docs.nvidia.com/cuda/cufft/.

[9] S. Baxter. Modern GPU, 2013. http://nvlabs.github.io/moderngpu/.

[10] NVIDIA Corporation. Thrust quick start guide, August 2014. http://docs.nvidia.com/cuda/thrust/.

[11] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. IEEE, 93(2):216–231,
February 2005.

[12] R. Felton, K. Blackler, S. Dorling, A. Goodyear, O. Hemming, P. Knight, M. Lennholm, F. Milani,
F. Sartori, and I. Young. Real-time plasma control at JET using an ATM network. In Proceedings of
the 11th IEEE NPSS Real Time Conference, pages 175–181, 1999.

6

