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1. Introduction

The study of transport coefficients of hot hadronic matters lheen attracting much interest
and attention in recent years. The experimentally measelfipdic flow v, of hadrons in Au+Au
collision at Relativistic Heavy lon Collider (RHIC), can b#erpreted in terms of viscous hydro-
dynamics with a small value af /s, which is close to the quantum boungd4it [1], n ands being
the coefficient of shear viscosity and entropy density rethgely. Such kind of results indicate the
strongly interacting nature of the matter created in heawycollisions. This interpretation based
on the measured elliptic flowp of hadrons in terms of viscous hydrodynamics however depend
sensitively on the value af/s. The behaviour of] and the bulk viscous coefficiedtas a func-
tion of temperature is particularly relevant in the conteikhon-ideal hydrodynamic simulations
of heavy ion collisions. A lot of interest has been generdeatling to quite a few estimates of the
transport coefficients of both partonic [2, 3] as well as badr [4, 5, 6, 7] constituents of strongly
interacting matter. The effects of heat flow in heavy ionisihs has received much less attention.
This is presumably on account of the fact that the net baryonber in the central rapidity region
at the RHIC and LHC is very small. However, at FAIR energies;dhe low energy runs at RHIC
the baryon chemical potential is expected to be significadteeat conduction by baryons may
play a more important role. Based on such a scenario a feviestodl heat conduction by pions
have been carried out. Using the experimemtalcross-section the thermal conductivity of a pion
gas was estimated in [8, 4, 9] whereas in [10] a unitarizettesitag amplitude was employed.

As already understood the created matter in heavy ion mribsundergoes dissipative pro-
cesses on its way to space time evolution and hence requines-&eal theory to describe its
kinematics. The first order theories of dissipative fluid ayrics that include the coefficients of
viscosity and thermal conductivity do not suffice this dgg@n since they face severe causality
violation problem. Hence we need a causal second ordentiveoere the corresponding relax-
ation timesrt go as input in the viscous hydrodynamic equations [11, 1BkyTindicate the time
taken by the fluxes to relax to their steady state values anskecently play an important role in
determining the space-time evolution of relativistic hean collisions. The first order transport
coefficients go as inputs in these relaxation times. The éeatpre dependence of the relaxation
times have been estimated in [4, 9, 8] with a parameterizedscsection which is independent
of temperature. Constant values of transport coefficieat® lbeen used in [11] and in [13] these
guantities have been evaluated using conformal quantudtfiebry for a strongly coupled system.

In the kinetic theory approach the dynamics of interactiesides in the differential cross-
section which goes as an input in the expressions of all ttragsport coefficients. In almost all
estimations of the transport coefficients a vacuum crossesewas employed. In this work we
consider a medium dependent interaction cross sectionateal at finite temperature to estimate
first the viscosities and thermal conductivity and use thestudy the temperature dependence of
the relaxation times of the dissipative flows.

2. First order transport coefficients in Chapman-Enskog mehod

The evolution of the phase space distribution of the piog®igrned by the equation

PHouf(x p) =CI[f] (2.1)
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whereC|f] is the collision integral. For binary elastic collisiops-k — p’+k’ which we consider,
this is given by [9]

_ /drk dry dre[£(x, P F (KL 4 F(x p)HL+ F(x,K)}
—f(x,p) FOCK) {1+ f(x, P )H1I+ F(x,K)}W | (2.2)

where the interaction rat&y = § 92 (2m)56*(p+k— p —K) anddlrq = % The /2 fac-

tor comes from the indistinguishability of the initial stgbions. For small deviation from local
equilibrium we write, in the first Chapman-Enskog approxiora

f(x,p)=fOxp+8f(xp), of(xp) =F0xp1+fPxploxp , (2.3)

pHuy (x) (x) -1
where the equilibrium distribution function is given b{f) (x, p) = [ T 1] , with T(x),

uy(x) and u(x) representing the local temperature, flow velocity and chahpotential respec-
tively. Putting (2.3) in (2.1) the deviation functigp(x, p) is seen to satisfy

puaIJ f(O) (X> p) = _g[(p] ) (24)

where the linearized collision term

g = f xp/drkdrudrk/ (K{1+ O, p)H1+ FO K}
[@(x, ) + @(x,k) — @(x, P') — @(x,K)] W . (2.5)

Using the form off((x, p) as given above on the left side of (2.4) and eliminating time
derivatives with the help of equilibrium thermodynamic tawe arrive at,

QAU + pulIHY (ol + Myh) (T16,T + Duy) — (pupv) (04 u")] FO (14 £0) = —T.2[g] .
(2.6)
In this equationQ = —in? + (puu*)?{3 -y} +{(y — D)mh—y T}puu¥, and (JHU"Y) =
%[D“U 4+ OVUH - %N‘"DUU 9]. Tobe a solutloncp must be a linear combination of the thermo-
dynamic forces appearing on the left hand side of the trahggoation as the following

@ = Adyuy + B, O (T~ 19, T —Duy) — Cpy(aHu") (2.7)

which on substituting on the right hand side of (2.6) we obtaset of three integral equation
satisfied by the coefficients, B,,C,

Z[A =-Qf Y (p {1+ O (p)}/T,
Z[By] = —Byuop’ (pu—h)f9(p){1+ O (p)}/T,
Z[Cu] = —(pupy) T O (p){1+ O (p)}/T .

2.8)

Here,Cyy = C(pypv) andBy = BA,yp*. The other details are discussed in [14, 15, 16].
In an imperfect fluid, the dissipative part of the energy motam stress tensor is [17],
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ATHY =21 (9HUY) + LAV 3gu + A {AMIUY + AUV} (9, T — Tu.dug) (2.9)

The first two terms corresponds to the viscous effects whéddst term indicates thermal dissipa-
tion. The dissipative part of heat flow or the energy 4-floneisted to thermal conductivity by the
following equation, [18],

Al = AAH9 (05T —Tu.dug) (2.10)
Again these quantities can be expressed in integral formstbe particle distribution function as,
ATHY = /drpf(())(l—i—f(0>)CuV(p“p"><0“u">—i—/drpf(o)(l—i—f(o))QAN“’dgua (2.11)
AI“—/ﬂ( U —h)p?abfo{l+ fo} (2.12)
- (27.[)3p0 p p o !0 0 .

Comparing, we obtain the expressions of transport coefiisje

. 3
= —/ (Zd)p 5 QAfo(L+ fo)

BT/ 27'[ poBVp (p-u—h)fo(1+ fo)

= 10/ o(1+ f0)C(p” PP) (Pa Pp) (2.13)
Here we follow the procedure outlined in [9] in which B),,C,, is expanded in terms of
orthogonal Laguerre polynomials of half integral ordertekfsome simplifications (discussed in
detail in Refs. [15]) the first approximation to transporeffizients comes out to be,

= T S A=——L n=—"219 (2.14)

whereay,, b11 andcyp can be expressed in terms of the integta(z) as

ax = 7X3(2) (2.15)
b11 = —Z[X(2) + X3(2)] (2.16)
and 1
Coo = 2[X1(2) + X2(2) + §X3(z)] (2.17)
where
8z
Xq(2) = [S%(z)] (=21/T) / dy cosﬁ’wsmhw;/ d@smG)ZdQ(w G)) d(p

eZZCOShL,UcoshX
(eE—1)(F —1)(ec—1)(ef —1)

/' dxsinhZ“X/ d6sing Mq(6,0) (2.18)
0 0

4
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with
E = z(coshy coshy — sinhy sinhy cosf) — u/T
F = z(coshy coshy — sinhysinhy cos@’) — /T
G = E + 2zsinhysinhy cos@
H = F + 2zsinhysinhx cos6’ . (2.19)

The functionsM, stand for

M1(6,0) = 1—cosO,
Mo(8,0) = cog 0 +cos 8’ — 2cosh cosh’ cosO ,
M3(8,0) = [cos’ 0 —cos 0')? (2.20)

and
cos@’ = cosB cos® — sinfsin@cosy . (2.21)

The quantitiesr,, B; andyp are discussed in next section.

3. Second order transport coefficients in Grad’s 14 moment nteod

The basic idea of the moment method is to obtain an approgimalution of the transport
equation (2.1) by expanding the distribution functibix, p) in momentum space around its local
equilibrium value when the deviation from it is small. We t@ri

f(x,p)=fOxp)+8f(xp), 8f(xp)=Fxp)L+f?x p)loxp) (3.1)

where the equilibrium distribution function is as before éobosonic system witlp is a quantity
which amounts the deviation.

Putting (3.1) in (2.1) the left hand side of the later split®ia term containing derivative over
the equilibrium distribution and another containing dative overg,

pud* fo+ fo(1+ fo)pud* o = —Z[4g), (3.2)

which after some simplification reduces to

I'I“(?u fo = f0(1+ f())

~ a ~
X (r—h)l‘IaDTT+_|_—1nI'IaD“P—(I‘I,JI'IV><D“U">+QD“U,1—TI'IuDu“
/ i 1" 0 a < a
+1{t1—y)+ (V' -1h—Vy }EDalq _ﬁ[lalq] ) (3.3)

with MH = p#/T, 1= p-u/T andQ = Q/T?, where,Q = —imZ+ (p-u)2{4 — vV} + p-u{(y’ —
1)h—y”T}. The reduced enthalpy per particle is definedras,h/T andP and1{ stand for the
pressure and heat flow vector respectively. Y8eandd'’s are mentioned in details in [19].
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For the remaining two terms in (3.2) we need to define the dewidunction and its deriva-
tive. Since the distribution function is a scalar dependingthe particle momenturp” and the
space-time coordinateé!, the deviation function is expressed as a sum of scalar ptedd tensors
formed frompH and tensor functions of. In terms of irreducible tensoxgis written as

@(x, p) = A(X, T) = Bu (X, T)(M*) + Cpy (x, T)(MHNY). (3.4)

The notation() denotes the irreducible tensors defined@$) = AHVT, and(MHMY) = [3(AHIAYE +
AVONHBY — SAHVACRIN Mg,

Now the x and r-dependent coefficient functios B, andC,, are further expanded in a
power series it such that the last power is the one which gives a non-zeraibation to the
collision term,

AXT) = Ag+A(X)T+Ax(X)T? = iAs(X)TS, (3.5)

1
Bu(X,T) = Bou(X) + B (X)T = ZO(BS)M(X) T, (3.6)
Cuv(%T) = (Co)pv(X). (3.7)

This leaves us with six-dependent coefficiento, A1, A, Boy, By andCoyy. It is convenient to
express them in terms of the thermodynamic fluxes (irredeidibws) in the following way,

n

A= T (3.8)
(e —aag) M
A= (a5 —ajag) nTaz (3.9)
B (apay — a3) M
Ao = (a.]_a3— )nTorz (310)
1§ AHY
By = ST 5 (3.11)
O 1gARY
Bov = T B (—b—o) (3.12)
5
((Co)") = —ﬁ<ﬂ“v> (3.13)

wherel and (MHV) are bulk and shear viscous fluxes respectively. The detailsbe found in
[19]. Defining all the space-time dependent coefficientsqpfagion (3.4) in terms of the known
functions it is now possible to specify the deviation fuantp completely. Knowingp, we now
go back and use it in the Boltzmann equation (3.2) to evaltie@esquations of motion for the
dissipative fluxes.

3.1 Bulk viscous pressure equation

Taking inner product of both sides of equation (3.2) withand applying the (inner product)
properties of irreducible tensors [18] we obtain the equetf motion for bulk viscous pressure



Transport propertiesin a thermal medium Sukanya Mitra

equation,
N=0 = ol ® e ramjon
1 3 bib
- nz—az{ﬂ_(?_b?’ +(1-vy)o (Sg)
+ {(hy'=1)—y")5 (S%) &'tag}Ould] - (3.14)

Retaining only the first term on the right hand side of (3.14) équation for the bulk viscous
pressure reduces to the same in the first order theory opdisst fluids with the coefficient of
this term as the bulk viscous coefficieqit Equation (3.14) is indeed hyperbolic and contains a
time derivative of the bulk viscous pressure. This yieldslaxation time for bulk viscous pressure

given by,
1 a3 2a2&3a4+a1a4

T e T (3.15)
with
a = g{g}n
a = ;{zg—l},
ag = $22{§+321§1},
ay = $z3{15z‘2£+22‘1+§},
a5 — ?24[62‘1{2+152‘2§}+{§+152‘2§}]. (3.16)
]
0z = zﬂ%% —z-l>+<§; FEA-VIZ T G- »/){fi +152‘2§2 +2z{3n7)

The termsS? are defined as (2) Z H/Tk9K(kz), Kn(x) denoting the modified Bessel

function of ordem with z=m;/T.

3.2 Heat flow equation

In this case we take the inner product of both sides of equg8®) with (M*)1. Following
similar techniques as above we get the equation for heat flow,

IH=TA[{ D:T —%}— —{B”D|“+V’ (N*¥Yy +a”0HNY, (3.18)

with
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LT, iy Ty
B nl31 bo nh”’

’ l Vl 3_Tb2

Y 3T 1.1 Ay — a3 ajay — aas \ bz]

1 2 3} + =
aag— a3 a3 —aag h

So from the above equation the relaxation time for heat flogivisn by,

T) :)\T%BN,
with
bp = — %
38
by = — gzév
by = — ${5z§+zz},
3 2
bg = — %{ 232+522§2+z3§}
1
BL= 322[1+51§2L (%)z]-

3.3 Shear viscous pressure equation

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Multiplying both sides of equation (3.2) wit{i1#V) we applying the inner product properties
of irreducible tensors as before. This produces the equafionotion for shear viscous pressure

(3.25)

(3.26)

(3.27)

(3.28)

given by,
(M) = [2(0M0) — = {y"D{M#) — BT},
with
S 1S
V// — ZZ[S% +62 Szl]
[ZS]Z ’
S
B/// E[F] %—I—S%
The coefficient of shear viscosity can be followed from thst tierm of the right hand side of egn.
(3.25) with,
S
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From (3.25) the relaxation time for shear viscous pressuobtained as,
Ty = ni;/”. (3.29)
n nT

4. The in-medium 77T Cross-section

m‘zsw :fmszsmzszszs\+m®m+---

Figure 1: m— rrscattering with self-energy corrections

The it cross-section is the key dynamical input for the evaluatibtransport coefficients
mentioned in earlier sections. Here the scattering is asdum proceed via and p meson ex-
change within the thermal medium. From the effective intéoa [20]

1 = .1 - o
L =gppH - Trx OyTi+ 590 Mo Tt TtO (4.1)

the matrix elements forrrr scattering are given by the following expressions wherewiftths
of the o and p mesons have been introduced in the propagators involveldeirtarresponding
s-channel processes. We thus have

Mi—o = 29 [ts__r:% + us—_r:%]
+ g5 [s— m%iimara i —1rr% * U—lmgf]
M1 = G [s— ri(f,t;iﬁprp i Ut__n?% B tu__r:lz)]
+ @ [t _1m% B u_lm%] . (4.2)

Defining the isospin averaged amplitude|.a|? = § 5, |.# | and ignoring the non-resonant
| =2 contribution, the cross-section is found to agree verywith the estimate based on measured
phase-shifts given in [4]. In this way it is ensured that teainical model is normalized against

experimental data.
To obtain the in-medium cross-section we replace the vacwidth in the above expressions

by the ones in the medium as indicated in fig.1. The width iateel to the imaginary part of the
self-energy through the relation [21]

M(T,M)=—MImnN(T,M) (4.3)
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wherell denotes the one-loop self energy diagrams shown in fig. 1 emédwaluated using the
real-time formalism of thermal field theory. Th® meson self-energy is obtained from thmer
loop diagram whereas in case of thaneson therrm, mw, 1hy, ma; graphs are evaluated using
interactions from chiral perturbation theory [22]. Theddndinal and transverse parts of tpe
self-energy are defined in termsrdﬁ as [23]

1

nr = —E(I'IﬁJr

2
1
%noo), nL:?noo, Moo= UMy - (4.4)

The momentum dependence being weak [23] we take an averagéhevolarizations,
1
M= 5[2|'|T+|'|L]. (4.5)

The imaginary part of the self-energy obtained by evalggtire loop diagrams is given by [24]

' d3k
ImM (g, d) = —n/ m X

N2{(1— £ (or) — £ (en))8 (o — wr— cn)

+(F () — 1 (wn))8(00 — wr+ wn) } +
N2{ () (cn) = 1)) 3(dlo + n— n)
(1= 1) (er) = 1) (e)) (o + wr+ )} (4.6)

wheref(©(w) = 54+ is the Bose distribution function with arguments; = /k?+ mé. and

W = \/(G—R)2+ mﬁ The termaN; and N, stem from the vertex factors and the numerators of
vector propagators, details of which can be found in [24] @hgular integration is done using the
o-functions which define the kinematic domains for occureeatscattering and decay processes
which lead to loss or gain @i (or ) mesons in the medium. To account for the substantiedrd

p 1T branching ratios of the heavy patrticles in the loop the ee#rgy function is convoluted with
their widths,

1 pm2rn?
Ni@m) = o /( dM? x

mqurh)z
1 1
Elm{mz_nﬁJriMrh(M)}n(q’M) @1

with

(mp+2rp)?
Ny = / dM? x
(mp—2rp)2

Al [Mz—mﬁjiMFh(MJ '

The contribution from the loops with these unstable pasidan thus be looked upon as multi-pion
effects inrrr scattering.

(4.8)

10
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Figure 2: The rrrt cross-section as a function of centre of mass energy. Thesdand solid lines respec-
tively indicate the cross-section obtained using the vacand in-medium widths of the ando mesons.

It is well known that hadrons undergo chemical freeze-oltegearly at a temperature close
to the crossover temperatufe~ 170 MeV [25]. The number-changing inelastic collisionssmea
at this point and a chemical potential gradually builds ughwlecreasing temperature until kinetic
freeze-out [26] which we take to be 100 MeV. Here the temperature-dependent pion chemical
potential is taken from Ref. [27] which is parameterized as

Un(T) =a+bT +cT?+dT3 (4.9)

with a=0.824,b = 3.04,c = —0.028,d = 6.05x 10~° andT, u in MeV.

We now plot in fig. 2 the totaitrt cross-section defined lay(s) = 1 [dQIZ with 42 = gﬁz
The increase in the widths of the exchangeahdo on account of thermal emission and absorption
is reflected in a significant change in both the magnitude hapesof the cross-section as a function
of the c.m. energy.

5. Results

In result section let us start with the results of shear \aggdo entropy density ratig /s. In
Fig. (3) for u; = 0 the upper set of curves with filled circles show the usuatetesing trend as
seen, for example in [7]. This trend is reversed wpg(iT ) is used and) /sincreases witfT. The
values in all cases remain well abové4ir. In the two set of curves the distinctly separated three
curves with vacuum and in medium cross sections respegtesdiibit the effect of the thermal
medium on the shear viscosity discussed so far. The cunihstiégrmalp propagator including
heavy meson loops show a larger enhancement indicatingagegreffect of medium on the shear
viscosity at finite temperature.

Then we have the results for bulk viscosifyas a function of temperaturgé. In Fig. (4)
the three sets of curves correspond to different valueseoptbn chemical potential. The clear
separation between the curves in each set displays a sagiéifect brought about by the medium
dependence of the cross-section. A large dependence oitheligmical potential is also inferred
since the three sets of curves appear nicely separated.

11
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vacuum
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Figure 3: n/sas a function off .
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Figure 4: ¢ as a function off . In each set the solid line indicates vacuum cross-sedtiendotted line for
in-medium modification due to pion loop and the dashed limédops with heavy mesons.

We next turn to the results of thermal conductivity. In fig) ¢&e plotAT as a function ofl
evaluated in the Chapman-Enskog approach. The effect of médium as well as temperature
dependent chemical potential is clearly visible for tholegsp

We now present the results of numerical evaluation of thexetlon times. We start withy,
as a function of temperature. In Fig. (6) the upper set of@&simerges the lower one at 206V
representing the point of kinetic freeze-out indicatingtth,(T) interpolates between the points
representing chemical and kinetic freezeouts. In eachhset;tshows a decreasing trend with
temperature which is in accordance with [4]. The three dbffié curves in each set show the effect
of the medium on account of thet cross section. These curves with medium cross sectiongappe
to be enhanced with respect to the vacuum ones indicatingfftbet of a thermal medium ory .

Next we plot ther, against temperature for the same two different values of pleemical
potentials mentioned above. We notice that the medium neadifioss sections evaluated at finite

12
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Figure 5: AT as a function off for 77t cross-section in vacuum and in medium.
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Figure 6: Relaxation time of bulk viscous pressure as a functiof dér different rr7r cross-section with
temperature dependent pion chemical potential.

temperature influence the temperature dependenag wiich appear to be more enhanced for
heavier mesons in the propagator than thart loop only. In Fig. (7) the nicely separated three
curves in each set reveal the effects of medium on the temperdependence aj, .

Finally we present our result af,, i.e, the relaxation time of the shear viscous flow for a
medium inducedtrt cross section. In each set two different values of chemioctrdial demon-
strates the effect ofi; on the values of,;. Moreover the effect of medium is shown by the en-
hancement of the curves which appears to be more signifioantdltipion case thamrt loop. In
all the three casesy{, 1, andt,) the effect of medium on relaxation times increases witheasing
temperature.

6. Discussions

In this work the main focus was to emphasize the role of mediadifications of the cross-
section in the evaluation of the transport coefficients. Faasport coefficients and their temper-

13
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Figure 7: Relaxation time of heat flow as a function ©ffor different 77t cross-section with temperature
dependent pion chemical potential.
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Figure 8: Relaxation time of shear viscous pressure as a functidnfof different 77t cross-section with
temperature dependent pion chemical potential.

ature dependence could affect the quantitative estimdtggrmals of heavy ion collisions particu-
larly where hydrodynamic simulations are involved. Forrapée, it has been argued in [28] that
corrections to the freeze-out distribution due to bulk ety can be significant. As a result the
hydrodynamic description of ther spectra and elliptic flow of hadrons could be improved by in-
cluding a realistic temperature dependence of the trahspefficients. So a realistic evaluation of
these quantities is essential to obtain the proper temperatrofile and consequently the cooling
laws of the evolving system. In addition it is found that tleéakation times of the bulk viscous
flow and the heat flow to be of similar magnitude to that of theastviscous flow which suggests
that they should all be taken into consideration in dissipatydrodynamic simulations.
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