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We present results from a numerical solution of the next-to-leading order (NLO) Balitsky-
Kovchegov (BK) equation in coordinate space in the large Nc limit. We show that the solution
is not stable for initial conditions that are close to those used in phenomenological applications
of the leading order equation. We identify the problematic terms in the NLO kernel as being
related to large logarithms of a small parent dipole size, and also show that rewriting the equation
in terms of the “conformal dipole” does not remove the problem. Our results qualitatively agree
with expectations based on the behavior of the linear NLO BFKL equation.
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1. Introduction

x

z′

z

y

r

X ′

Y ′

X

Y

Figure 1: Coordinates for the
eikonal Wilson lines and their
separations

The CGC picture [1] of high energy QCD has been succes-
fully applied to describe deep inelastic scattering, single particle
production and particle correlations in forward rapidity proton-
proton and proton nucleus collisions. It also forms a basis for
understanding the initial stage of deconfined QCD matter cre-
ated in ultrarelativistic nucleus-nucleus collisions. An essential
ingredient in these calculations are the JIMWLK equation and its
mean field limit — the Balitsky-Kovchegov (BK) equation [2, 3].
They describe the energy, or equivalently Bjorken-x, dependence
of correlators of Wilson lines in the target color field. Cross sec-
tions for different processes are then expressed in terms of these
Wilson line correlators.

Recently first steps have been taken to develop this phenomenological picture to next-to-
leading order (NLO) accuracy, both for the evolution equations themselves [4, 5, 6] and for specific
scattering processes [7, 8, 9, 10]. There remain both conceptual and numerical challenges in carry-
ing out the full CGC phenomenology program at NLO accuracy. This talk discusses in more detail
one of these aspects, by presenting the result [11] from a direct “brute force” numerical solution of
the NLO BK equation as it is written down in Ref. [4].

2. The equation

In the large-Nc limit (but assuming Nf ∼ Nc) we can write the evolution equation derived in
Ref. [4] for the dipole as:

∂yS(r) =
αsNc

2π2 K1⊗ [S(X)S(Y )−S(r)]+
α2

s NfNc

8π4 K f ⊗S(Y )[S(X ′)−S(X)]

+
α2

s Nc
2

8π4 K2⊗ [S(X)S(z− z′)S(Y ′)−S(X)S(Y )], with S(r) =
1

Nc

〈
TrU†(x)U(y)

〉
, (2.1)

Here U(x) is a fundamental representation Wilson line describing the propagation of a high energy
probe through the dense color field of the target. The Wilson lines are needed at coordinates
x,y,z,z′ in the two-dimensional transverse plane, with the six distances between them denoted as
r,X ,X ′,Y,Y ′ and z− z′ as shown in Fig. 1. The convolutions ⊗ denote integrations over z (in K1) or
z and z′ (the other terms). We replace the terms explicitly proportional to the β -function coefficient
in the first kernel K1 by the “Balitsky” running coupling prescription [12]. With this replacement
the explicit expression for the first kernel is

αsNc

2π2 K1 =
αs(r)Nc

2π2

[
r2

X2Y 2 +
1

X2

(
αs(X)

αs(Y )
−1
)
+

1
Y 2

(
αs(Y )
αs(X)

−1
)]

+
αs(r)2Nc

2

8π3
r2

X2Y 2

[
67
9
− π2

3
− 10

9
Nf

Nc
−2ln

X2

r2 ln
Y 2

r2

]
. (2.2)

The first term inside first the square bracket in K1 is the leading order fixed coupling kernel. The
whole first square bracket in K1 corresponds to the “Balitsky” running coupling prescription often
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used in LO phenomenology [13, 14], with the second square bracket being a pure NLO term. The
coupling constant in front of the purely NLO kernels K2 and K f is taken to depend on the parent
dipole size r and the explicit expressions for the kernels are

K2 =−
2

(z− z′)4 +

[
X2Y ′2 +X ′2Y 2−4r2(z− z′)2

(z− z′)4(X2Y ′2−X ′2Y 2)
(2.3)

+
r4

X2Y ′2(X2Y ′2−X ′2Y 2)
+

r2

X2Y ′2(z− z′)2

]
ln

X2Y ′2

X ′2Y 2

K f =
2

(z− z′)4 −
X ′2Y 2 +Y ′2X2− r2(z− z′)2

(z− z′)4(X2Y ′2−X ′2Y 2)
ln

X2Y ′2

X ′2Y 2 . (2.4)

In addition to the β -function terms, two kinds of logarithms appear in the kernels. The ones
in K2 and K f depend on conformal ratios of four distances, and vanish in the limit r→ 0. The
first kernel K1, on the other hand, has a nonconformal double logarithm that diverges in the limit
r→ 0. Although this is an integrable singularity in the z-integral, it nevertheless has a problematic
effect on the evolution equation, as we will show in the following. As an initial condition we use a
parametrization

N(r)≡ 1−S(r) = 1− exp
[
−(r2Q2

s0)
γ

4
ln
(

1
rΛQCD

+ e
)]

, (2.5)

with two tunable parameters:

• The ratio Qs0/ΛQCD essentially determines value of αs and controls the overall relative im-
portance of the NLO corrections.

• The anomalous dimension γ controls the shape of the initial condition. Leading order fits to
HERA data using the parametrization (2.5) prefer a value γ & 1 which then becomes γ ∼ 0.8
during the BK evolution. Since in an NLO fit also the impact factor relating the cross section
and the dipole amplitude N(r) should be different from the LO one, without performing the
full fit it is not a priori obvious what would be a value favored by experimental data.

3. Properties of the solution

Figure 2 (left) shows the logarithmic evolution speed ∂yN(r)/N(r) for the MV model initial
condition γ = 1. Firstly it is obvious that for small values of Qs/ΛQCD, i.e. effectively large cou-
plings, the the evolution speed is negative at all values if r. This means that the NLO corrections are
large and negative, and the scattering amplitude actually decreases with energy; a very nonintuitive
result. For smaller typical values of αs the region around the “front” r ∼ 1/Qs behaves in a rea-
sonable way, but for very small dipoles the evolution speed still diverges as ∂yN/N ∼ lnr. Figure 2
(right) shows the contributions from different parts of the equation. The LO term gives a positive
∂yN/N that approaches a constant at r→ 0. The divergence for small r is due to the nonconformal
double logarithm, while the other NLO corrections yield a contribution that is negative, but smaller
in magnitude than the leading order result.

While having ∂yN(r) < 0 or N(r) < 0 is not very physical, it is not in itself a mathematical
contradiction. A divergent ∂yN/N ∼ lnr in the limit r→ 0 is, however, a signal of an instability in
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Figure 2: Left: Evolution speed ∂yN(r)/N(r) at the initial condition y = 0 for the MV model initial condi-
tion, γ = 1 Right: Contribution of different parts of the equation (2.1) to the evolution speed ∂yN(r)/N(r).
Also the dipole amplitude N(r) is shown with a thick grey line.

the system. One way to see this is the following simple argument. Let us consider a small but finite
interval in rapidity, dy, as in a numerical solution of the evolution equation. A diverging ∂yN/N
for r→ 0 means that there is a small but finite r below which N becomes negative already in this
one step in rapidity. This immediately makes the equation unstable, since the convergence of the
z-integral of the leading order equation requires N(r)→ 0 for r→ 0. A finite N(r = 0) is also
inconsistent with the definition N(x− y) = 1− 1

Nc
TrU†(x)U(y) in terms of Wilson lines. To avert

this problem in the numerics, we always enforce N(r)≥ 0 by hand.

4. The anomalous dimension
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Figure 3: Anomalous dimension γ(r) = dlnN(r)/dlnr2 at y = 1, 5, 30.

Some more insight into the behavior of the equation can be obtained by following the devel-
opment of the r-dependent anomalous dimension that we define here as

γ(r) =
dlnN(r)

dlnr2 . (4.1)

In terms of the anomalous dimension we can discuss the behavior of the equation at small r by
parametrizing the amplitude as N(r) ∼ (Qsr)2γ . For an appropriate γ the leading order equation
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maintains this form, with Q2
s ∼ eλy and ∂yN/N ≈ 2γλ > 0. If, due to large NLO corrections, one

has ∂yN/N→−c < 0 for r→ 0, this means that the solution behaves as N ∼ e−cy: mathematically
this is not problematic, but physically it is unnatural to have the scattering amplitude decrease
with energy. If, however, ∂yN/N ∼ c lnr, we can parametrize N(r) ∼ (Qsr)2γ(y), with γ(y) ∼ y.
In other words, for a diverging evolution speed the functional form of the amplitude as a function
of r gets steeper with the evolution. If one enforces N > 0 for small r and N < 1 for r→ ∞, the
amplitude eventually develops into a discontinuous form N(r) ∼ θ(r− 1/Qs). The evolution of
γ(r) for different initial conditions is shown in Fig. 3, where this behavior can be clearly seen. The
unstable nature of the equation shows up as an increase in γ(r) for small r. This increase starts
immediately for the initial condition with γ = 1, more slowly for the initial condition γ = 0.8 and
is not noticeable within the rapidity range studied here for γ = 0.6.

5. The composite conformal dipole

In Ref. [15] Balitsky and Chirilli note that the nonconformal double logarithmic term appears
also in the equation for the conformal N = 4 Super Yang-Mills theory. It is therefore interpreted
as an artefact of a cutoff that breaks conformal invariance. The authors then propose to correct
for this effect order by order in perturbation theory by introducing a “composite conformal dipole”
operator defined as

S(r)conf = S(r)− αsNc

4π2

∫
d2z

r2

X2Y 2 ln
ar2

X2Y 2 [S(X)S(Y )−S(r)], (5.1)
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Figure 4: Contribution of different terms to the evo-
lution speed ∂yN/N of the conformal dipole.

with a a dimensionful constant that drops out
of the final equation. Rewriting the equation
(2.1) in terms of the conformal dipole (5.1)
removes the nonconformal double logaritm,
but introduces an additional term in the other
kernel K2 that behaves as lnr2 for small r.
We have checked numerically that the quali-
tative behavior of the conformal dipole equa-
tion remains the same as the original one. As
shown in Fig. 4, it is now this new lnr2 term
which is responsible for the leading behavior
at small r.

In conclusion, we have performed the
first numerical solution of the full NLO BK
equation directly in coordinate space. The
NLO corrections are negative, implying a
slower energy dependence of cross sections than with the LO equation. This generically leads
to a better agreement with experimental data. The equation has, however, a double logaritmic term
that causes a problematic behavior for small dipoles, i.e. high Q2. It seems evident that these large
logarithms will need to be resummed in order for the equation to be useful in practical phenomeno-
logical work.
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