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Transverse Momentum Distributions at Small-x
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We review recent theoretical developments connecting two fields: transverse momentum distri-
butions in hadron physics and small-x saturation physics. Both fields use the same language to
describe nucleon/nucleus structure in terms of parton distributions. We present the current under-
standing of the TMDs at small-x, and discuss future perspectives as well.
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TMDs at Small-x

1. Introduction

There have been strong theoretical arguments and compelling experimental evidence that sug-
gest that the gluon distribution saturates at small Bjorken-x [1, 2, 3, 4]. The emergence of the gluon
saturation at small-x changes the landscape of parton distributions inside the nucleon/nucleus. In
the dense region, the QCD dynamics will be different as compared to that in the dilute region.
For example, the evolution equation has to be modified to account for the high density gluon dis-
tribution. In the dilute region, the DGLAP evolution has been employed to understand the scale
dependence of parton distributions, whereas the small-x BFKL evolution (and the nonlinear exten-
sion: BK-JIMWLK) plays a crucial role. These QCD effects are summarized in Fig. 1, which is
usually referred as the phase structure of the cold nuclear matter. The QCD dynamics in the dilute
region, aka, the DGLAP evolution, has been systematically studied in the last three decades thanks
to the vast experimental data generated from various high energy facilities. On the other hand,
the investigation of the small-x dynamics (either BFKL or BK-JIMWLK) had just started very re-
cently, although the theoretical arguments have been put in place in late 70s. A central question is
to identify the boundary between the dilute and dense regions, the so-called saturation limit.

It was realized that the semi-inclusive processes, which involve a hard momentum scale Q in
addition to the transverse momenta of the observables, have a unique feature to probe the saturation
physics. The most important advantage is that they can directly access to the unintegrated gluon
distributions (UGDs), which are important ingredients in the saturation physics. They unveil the
importance of the multiple interaction effects in the factorization of the hard processes in the small-
x calculations. Furthermore, the UGDs are unified with the transverse momentum distributions
(TMDs) of gluon in nucleon/nucleus [5]. The TMDs are closely related to the tomography concept
of partons which are developed in the last few years in hadron physics community. Therefore, the
TMDs at small-x shall provide a unique opportunity to connect the underlying physics associated
with wide range of phenomena. In this talk, we will review some of recent progress toward to a
unified picture for the TMDs at small-x [4].

2. Gluon Distributions at Small-x

In saturation physics, two different unintegrated gluon distributions (UGDs) have been widely
used in the literature. The first gluon distribution, which is known as the Weizsäcker-Williams
(WW) gluon distribution, is calculated from the correlator of two classical gluon fields of relativis-
tic hadrons [3, 6]. The WW gluon distribution has a clear physical interpretation as the number
density of gluons inside the hadron in light-cone gauge, and can be defined following the conven-
tional gluon distribution [7, 8]

xG(1)(x,k⊥) =
∫ dξ−d2ξ⊥

(2π)3P+
eixP+ξ−−ik⊥·ξ⊥〈P|F+i(ξ−,ξ⊥)L

†
ξ
L0F+i(0)|P〉 , (2.1)

where Fµν is the gauge field strength tensor Fµν
a

Lξ = P exp{−ig
∫

∞

ξ−
dζ
−A+(ζ ,ξ⊥)}P exp{−ig

∫
∞

ξ⊥
dζ⊥ ·A⊥(ζ− = ∞,ζ⊥)}
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Figure 1: The so-called phase structure of the cold nuclear matter: parton distributions in the dilute and
dense region and the associated QCD dynamics controlling the evolutions. Along the momentum scale
(Q2) in the dilute region, we have the well-known DGLAP evolution, whereas the BFKL evolution plays
important role at small-x. In the dense region, a non-linear term in BFKL has to be taken into account,
which leads to the BK-JIMWLK evolution. We note that the DGLAP and BFKL are dealing with different
forms of the parton distributions: the integrated and unintegrated ones, respectively.

is the gauge link in the adjoint representation. This gluon distribution can also be defined in the
fundamental representation [9],

xG(1)(x,k⊥) = 2
∫ dξ−dξ⊥

(2π)3P+
eixP+ξ−−ik⊥·ξ⊥〈P|Tr

[
F+i(ξ−,ξ⊥)U

[+]†F+i(0)U [+]
]
|P〉 , (2.2)

where the gauge link U
[+]

ξ
=Un [0,+∞;0]Un [+∞,ξ−;ξ⊥] with Un being reduced to the light-like

Wilson line in covariant gauge. It is straightforward to see that U [+] represents the final state in-
teractions according to its future integration path to +∞. By choosing the light-cone gauge with
certain boundary condition for the gauge potential (A⊥(ζ− = ∞) = 0 for the specific case above),
we can drop out the gauge link contribution in Eqs. (2.1) and (2.2) and find that this gluon distri-
bution has the number density interpretation. Then, it can be calculated from the wave functions
or the WW field of the nucleus target [3, 6]. Within the CGC framework, this distribution can be
written in terms of the correlator of four Wilson lines as,

xG(1)(x,k⊥) =−
2

αS

∫ d2v
(2π)2

d2v′

(2π)2 e−ik⊥·(v−v′) 〈Tr [∂iU(v)]U†(v′)
[
∂iU(v′)

]
U†(v)

〉
xg
, (2.3)

where the Wilson line U(x⊥) is defined as Un [−∞,+∞;x⊥].
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The second gluon distribution, the Fourier transform of the dipole cross section, is defined in
the fundamental representation

xG(2)(x,k⊥) = 2
∫ dξ−dξ⊥

(2π)3P+
eixP+ξ−−ik⊥·ξ⊥〈P|Tr

[
F+i(ξ−,ξ⊥)U

[−]†F+i(0)U [+]
]
|P〉 , (2.4)

where the gauge link U
[−]

ξ
= Un [0,−∞;0]Un [−∞,ξ−;ξ⊥] stands for initial state interactions.

Here, the gauge link contribution can not be completely eliminated. In other words, there is no
number density interpretation for this gluon distribution. This is also because it contains both ini-
tial and final state interaction effects. Due to the gauge link in this gluon distribution from −∞ to
+∞, naturally this gluon distribution can be related to the color-dipole cross section evaluated from
a dipole of size r⊥ scattering on the nucleus target, and has been calculated in the CGC formalism,

xG(2)(x,q⊥) =
q2
⊥Nc

2π2αs
S⊥
∫ d2r⊥

(2π)2 e−iq⊥·r⊥ 1
Nc

〈
TrU(0)U†(r⊥)

〉
xg
. (2.5)

It is important to investigate the above two gluon distributions by measuring the quark-antiquark
correlation in DIS process and direct photon jet correlation in pA collisions, since these processes
can directly probe these two gluon distributions separately [5]. A comprehensive study on the
dihadron correlations in the forward pA collisions has been performed with the full CGC results [5].
An effective kt factorization has been established for these processes in the back-to-back correlation
limit. In particular, it was found that, the differential cross sections can be expressed in terms of
various UGDs, which can be related to the above two fundamental UGDs.

3. QCD Resummaiton: BFKL vs Sudakov

An important application of the perturbative quantum chromodynamics (QCD) is the resum-
mation. In high energy hadronic processes involving largely separated scales, resummation is not
only necessary to make reliable predictions, but also crucial to extract the fundamental properties
of the strong interaction theory. One of the examples is the resummation of the Sudakov-type dou-
ble logarithms [10, 11]. The double logarithms appear in, for example, the transverse momentum
spectrum of a hard process, where each order of perturbative correction is accompanied by a large
double logarithmic term of ln2(Q2/k2

⊥) with Q the large momentum scale and k⊥ the transverse
momentum. This resummation is often referred as the transverse momentum dependent (TMD)
resummation. Meanwhile, there is also the small-x resummation which is equally important, in
particular, in the energy regime of the large hadron collider (LHC). The small-x resummation is
governed by the well-known BFKL evolution [12], which will be extended to the so-called BK-
JIMWLK evolution [13] to take into account the non-linear term in the evolution due to high gluon
density in nucleons/nuclei at high energy.

One would naturally ask the following question: if there is a place that we have to resum the
above two large logarithms and can we do that consistently? The answer is yes. In recent studies
of Refs. [14, 15, 16], it has been shown that we can perform the above two resummations (Sudakov
and BFKL) consistently in physical processes in high energy scattering. The physics behind the
above results can be understood as follows. The gluon radiation comes from three different regions,
for a particular partonic channel in pA collisions: (1) collinear gluon parallel to the incoming
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nucleon; (2) collinear gluon parallel to the incoming nucleus; (3) soft gluon radiation. For example,
for one-gluon radiation contribution to the Born diagram in pA collisions, we can parameterize the
radiated gluon momentum as q = αq p1 +βq p2 + q⊥ , where p1 and p2 denote the four momenta
of incoming partons in the partonic process. The momentum region of (1) corresponds to αq ∼
O(1), whereas βq � 1, which contributes to the collinear divergence associated with the parton
distribution from the nucleon. For region (2), the dominant collinear gluon radiation parallel to
the nucleus requires not only βq of order 1, but also close to 1, i.e., 1− βq � 1. Effectively,
because of q⊥ ∼ q⊥�Q, this leads to αq→ 0. This corresponds to the rapidity divergence at one-
loop order, which can be absorbed into the renormalization of the un-integrated gluon distribution
of the nucleus in the small-x limit. Region (3) concerns the Sudakov double logarithms where
αq ∼ βq � 1. The gluon radiation in this kinematic region depends on the overall color flow in
the hard partonic processes [14]. The kinematics of the three regions are well separated, and at the
leading power of q⊥/Q, they can be factorized into various factors.

We emphasize that the small-x resummation of high order corrections in terms of ln(s/Q2)∼
ln(1/xA) is carried out by solving the small-x evolution equations, whereas the Sudakov double
logarithms in terms of ln(Q2/q2

⊥) is resummed by solving the TMD evolution equation. In a
recent paper, Balitsky and Tarasov have shown that both evolution equations can be derived from
the operator definition of the gluon distribution. As a consequence, we immediately find that the
Sudakov effects will be dominant effects in the dilute region where Qs � Q. On the other hand,
in the dense region with Q ∼ Qs, the small-x effects dominates. Since the small-x and Sudakov
resummations are common features in hard processes in pA collisions, we expect they will play
important roles in hard scattering processes in pA collisions.

4. Quark TMD at Small-x

The TMD quark distribution is defined as [17]

q(x,k⊥) =
1
2

∫ d2ξ⊥dξ−

(2π)2 e−ixP+ξ−−ik⊥·ξ⊥〈P|Ψ̄(ξ−,ξ⊥)Lξ γ
+L0Ψ(0)|P〉 , (4.1)

where P is the momentum for the hadron, x and k⊥ are longitudinal momentum fraction of the
hadron and transverse momentum carried by the quark. At small-x, we can calculate the TMD
quark distribution in nucleon/nucleus in the saturation framework. This is because, at this region,
the quark distribution is dominated by gluon splitting [18, 19, 20],

xq(x,k⊥) =
Nc

4π4

∫
d2bd2q⊥F(q⊥,x)

(
1− k⊥ · (k⊥−q⊥)

k2
⊥− (k⊥−q⊥)2 ln

k2
⊥

(k⊥−q⊥)2

)
, (4.2)

where F(q⊥) is the well-known dipole gluon distribution, A number of interesting features of
this quark distribution have been discussed in the literature. For example, in the small k⊥ limit,
the quark distribution saturates: xq(x,k⊥)|k⊥→0 ∝ Nc/4π4; in the large k⊥ limit, it has power-law
behavior xq(x,k⊥)

∣∣
k⊥�Qs

∝ Q2
s/k2
⊥.

More importantly, we can incorporate both small-x QCD dynamics and Sudakov resummation
in the above quark distributions. First, we can calculate the TMD quark distribution from the dipole
gluon distribution from the above equation, where the dipole gluon distribution obeys the small-x
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Figure 2: TMD up quark distributions f (sub.)
u (x = 0.1,k⊥) as functions of the transverse momentum (right)

at different scale Q for different schemes, from the top to the bottom: JCC, Lat., JMY (lnρ = 1).

BK evolution equation. In the sense, once we have the model parameterization for the dipole gluon
distribution at some initial x0, we can compute not only the dipole gluon distribution at any value
of small-x by solving the BK evolution equation, but also the quark distribution. This provides a
powerful approach for phenomenology associated with the quark distributions at small-x.

Meanwhile, the Sudakov logarithms can be resummed by solving the TMD evolution equation.
This solution help to simplify the differential cross sections in terms of the TMDs at the hard mo-
mentum sale, i.e., setting the factorization scale at µF =Q. In addition, there is scheme dependence
in the TMD definition and factorization, due to the soft factor contribution. The way to subtract
the soft factor and regulate the associated light-cone singularity defines the scheme [21, 22, 23].
However, after solving the evolution equations, the scheme dependence can be factorized into per-
turbative calculable coefficients, which can be compared with different schemes. Thus, we obtain
a unified picture for TMD phenomenology [24]. In Fig. 2, as an example, we plot the up quark
distributions at x = 0.1 for different schemes at different scale Q: f̃ (sub.)

u (x = 0.1,b⊥) as functions
of b⊥ (left) and f (sub.)

u (x = 0.1,k⊥) as functions of the transverse momentum k⊥. Here, three cho-
sen schemes have been shown: Collins-2011 scheme (JCC) [21]; Ji-Ma-Yuan scheme (JMY) [22];
Lattice scheme (Lat) [23]. As a general feature, there are broadening effects for TMD distribu-
tions at higher scales. These plots also show that the difference between the different schemes
becomes less evident at higher scales. Furthermore, the scheme dependence in TMD distributions
will be compensated for by the hard factors of each scheme, and the final expressions will be the
same when compared with the physical cross sections from experiments. It will be interesting to
compare the TMDs at small-x as we discussed above.

5. Conclusion

In this talk, we have reviewed recent theoretical developments on TMDs at small-x and the
associated QCD resummation in hard processes in hadronic collisions, It was shown that the two
famous resummations in high energy scattering: Sudakov and BFKL can be encoded in the cal-
culations consistently. This has opened a new window to study strong interaction physics in great
details. We anticipate more theoretical and phenomenological developments along this direction.
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