PROCEEDINGS

OF SCIENCE

A DIS Event Shape at N°LL *

Daekyoung KANG'
Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
E-mail: kangl@lanl.gov

Christopher Lee

Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
E-mail: clee@lanl.gov

lain W. Stewart
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA

E-mail: iains@mit.edu

A high precision calculation of the event shape DIS thrust, with next-to-next-to-next-to-leading-
logarithmic resummation and a rigorous treatment of hadronization corrections, is presented. Per-
turbative resummation uncertainties in the cross section are reduced to the 2% level for a signifi-
cant region of the HERA phase space in x and Q, thus allowing for new accurate measurements
of a(myz).

XXIII International Workshop on Deep-Inelastic Scattering
27 April - May 1 2015
Dallas, Texas

*LA-UR-15-25377, MIT-CTP 4640
Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/


mailto:kang1@lanl.gov
mailto:clee@lanl.gov
mailto:iains@mit.edu

A DIS Event Shape at N°LL Daekyoung KANG

Event shapes provide a key method of measuring jets in deep-inelastic scattering (DIS). This
was done successfully by H1 and ZEUS [1, 2, 3, 4, 5, 6] and compared with theoretical calculations
with next-to-leading-logarithmic (NLL) resummation [7, 8]. Here we consider the event shape DIS
thrust, 7, which is defined in the Breit frame using the momentum of the exchanged ¥ or Z-boson
to determine the z-axis, ¢ = (0,0,0,Q). It can be measured solely from events in the current
hemisphere where z > 0 via T = 1 — (2/Q) ¥c »; Piz» thus avoiding the lack of detector coverage
in parts of the beam region. The event shape 7 also does not suffer from non-global logarithms [8].

Recently an all orders factorization theorem was derived for do /dt [9], which enables higher
order perturbative results to be obtained, and a more rigorous treatment of power corrections,
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Results with a resummation of the singular o In/ 7/7 terms at next-to-next-to-leading-log (NNLL)
order were given in [9]. Here we extend this analysis to one higher order, N°LL, by exploiting
the recent 2-loop calculation of the quark beam function B, [10, 11], the 2-loop DIS soft function
S [12, 13, 14, 15], and known results for the 2-loop hard function H and jet function J;, and their
3-loop anomalous dimensions [16, 17, 18]. The smaller nonsingular contributions to do/dt are
also now known analytically at &( o) [19], while numerical results are available at &' (o?) [20, 21].
Power corrections are encoded by a hadronic matrix element  appearing in S, using formalism
developed in Refs. [22, 23, 24, 25, 9]. (The DIS thrust 7 is equal to the Breit frame 1-jettiness le,
and hence belongs to the class of 1-jettiness event shapes [26]. Results for other 1-jettiness DIS
variables were obtained in Refs. [27, 28, 29, 9], currently up to NNLL order.)

Fits for a,(mz) in the tail region of the DIS 7 distribution, should simultaneously fit for the
power correction ; (similar to the highly successful fits for the e™ e~ thrust event shape in [30]).
This is facilitated by considering do /dt from multiple x and Q values. Interestingly, the factoriza-
tion theorem in Eq. (1) remains valid for relatively small x, and the fractional contribution from the
nonsingular corrections even decreases with decreasing x, as shown at /() in [31].

In Fig. 1 we show the convergence of the DIS thrust cross section and decrease in the per-
turbative resummation uncertainty when going from NLL to NNLL to N3LL order. Results are
displayed for a representative value of x and Q, while cross sections for other values can be found
in [31]. In Fig. 2 we show the percent uncertainty of do/dt for various values of x and Q in the
region accessible by HERA, demonstrating that the theoretical resummation uncertainties become
as low as 2% in accessible regions of the phase space. Values are obtained as the average uncer-
tainty in do /d7 in the tail region 0.15 < 7 < 0.35. In Fig. 3 we show how much the cross section
changes with variations of the input parameters o(mz) and Q,, as well as comparing the o (myz)
sensitivity to the N°LL resummation uncertainties, and to the uncertainties from the NNLO MSTW
parton distributions [32]. Figures for other values of x and Q are available in [31]. The degeneracy
between o,(mz) and Q, is broken by measurements at multiple Q. The theoretical precision of
our N3LL cross section indicates that measurements with 1-2% uncertainty in o (nz) should now
be possible. A measurement of  from DIS is also of broader use, since this same ;| parameter
occurs in pp — Z + 1-jet, where it yields the power correction for the jet-mass that is linear in the
jet radius [33].
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Figure 1: Convergence of the DIS thrust distribution. Results at three orders are shown along with their
perturbative uncertainty. Left panel shows tdo /dt. Right panel shows the relative uncertainty for do/dr.
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Figure 2: Percent uncertainty of our N°LL cross section for the region in x and Q accessible at HERA.
Uncertainties are for the tail of the DIS thrust distribution which can be used to measure o (mz). Also shown
are the points used for past DIS event shape measurements.
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Figure 3: Sensitivity of the DIS thrust cross section to changes in o (mz) and Q (left panel) and compared
with PDF and N3LL uncertainties (right panel).
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