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In this presentation we review the current status in the automated evaluation of scattering ampli-
tudes, with particular attention to the developments related with NLO calculations, which led to
the construction of powerful multi-purpose computational tools. After a general overview, we will
devote a short section to describe the GOSAM framework for NLO calculations and its application
to the production of Higgs boson plus jets. We will then briefly comment on the challenges pre-
sented by NNLO calculations, whose structure is considerably more complicated. Finally, we will
describe some of the features of the integrand-reduction techniques beyond NLO, an alternative
promising approach to multi-loop calculations which is currently under development.
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1. Introduction

The evaluation of scattering amplitudes allows us to test the theoretical models and compare
their phenomenological predictions with the results of the experiments at particle colliders. In
the light of the ongoing activities at the Large Hadron Collider (LHC), it is mandatory to have
precise and reliable tools, that allow for an accurate and efficient evaluation of cross sections and
differential distributions for a variety of processes.

In the past decade, a better understanding of the structure of scattering amplitudes was achieved
thanks to the complementary work of several groups, which transformed beautiful mathematical
properties of scattering amplitudes, such as recursion relations, unitarity, and integrand decompo-
sition, into practical computational tools for the evaluation of physical observables.

In order to properly describe the data collected by the experimental collaborations, theory
predictions are not reliable without accounting for higher orders, since leading-order (LO) results,
usually obtained with a tree-level calculation, are affected by large theoretical errors. For most
analyses, results should be provided at least at Next-to-Leading-Order precision (NLO), which are
considerably more involved: they require the computation of one-loop virtual corrections (virtual
part), contributions from real emission (real part), obtained by adding one additional particle in the
final states, as well as a clever way of dealing with infrared divergences that occur in both virtual
and real part and only cancel out when all parts are combined together. While the LO matrix
elements and the NLO real parts have been available for a long time, until recently the evaluation
of the virtual part of one-loop contributions represented the bottleneck towards the automation of
NLO calculations. This is not the case anymore.

The scope of this talk is to summarize the recent progress in the evaluation and automation of
scattering amplitudes, which led to the development of powerful automated computational tools for
Next-to-Leading Order (NLO) calculations. After an overview of the many different tools which
are currently available, we will devote a short paragraph to describe the GOSAM framework for
NLO calculations and its application to the production of Higgs boson plus jets.

While the NLO tools are reaching their full maturity, and they are seamlessly being incorpo-
rated in the Monte Carlo programs or used to produce N-tuples of events to be used within the
experimental analyses, the attention of the theoretical community is quickly shifting towards the
new challenges presented by Next-to-Next-to-Leading-Order (NNLO) calculations, whose struc-
ture is considerably more complicated. We will touch on this topic during the second part of the
presentation. As a development potentially relevant for future calculations beyond NLO, we will
describe the extensions of the integrand reduction to higher orders in perturbation theory.

All the topics contained in this brief talk are based on a rich and extensive literature. We refer
the reader to Refs. [1] (and references therein) for a more comprehensive picture of the field.

2. Scattering Amplitudes at Next-to-Leading Order

The standard method for the evaluation of NLO virtual corrections relies on the calculation
of all the Feynman integrals associated with each process, namely to compute, for each diagram
contributing to the amplitude and for each phase space point, integrals of the kind

M =
∫

dnq̄ A (q̄) =
∫

dnq̄
N (q̄)

D̄0D̄1 . . . D̄m−1
, (2.1)
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where D̄i are the d−dimensional denominators generated by the propagators of the particles inside
the loop. Since any one-loop integral M can be decomposed in terms of a finite and known set of
scalar master integrals (MIs) [2], plus an additional term R known in the literature as rational part,
the calculation of one-loop virtual amplitudes can be summarized in terms of three separate tasks:
i) the generation of the unintegrated amplitudes A , namely their numerator functions N and the
list of denominators D̄i; ii) the reduction of the amplitude to determine all coefficients multiplying
each of the MIs and the rational term R; iii) the evaluation of the MIs which, multiplied by the
coefficients obtained in the reduction, provide the final result. Since all scalar master integrals are
known and available in public codes [3] and amplitudes can be easily generated with algebraic or
numerical techniques, the reduction step is what usually distinguishes the different tools available
on the market.

During the past decade, the approach to one-loop calculations was revolutionized by merging
the idea of four-dimensional unitarity-cuts [4, 5], with the understanding of the universal alge-
braic form of any one-loop integrals, contained in the OPP method [6]. Unitarity-based meth-
ods and integrand-level reduction techniques provided the theoretical background for develop-
ment of efficient computational algorithms for NLO calculations in perturbation theory, which
have been implemented in various automated codes. Tools based on generalized unitarity meth-
ods, such as ROCKET [7], BLACKHAT [8], and NJET [9] have been very effective in tackling
processes with high multiplicities, such as W,Z+jets or multi gluon amplitudes. The traditional
4−dimensional OPP integrand reduction, implemented in the code CUTTOOLS [10] and utilized
by MADLOOP [11] and HELAC-NLO [12], as well as the d−dimensional integrand reduction pro-
vided by SAMURAI [13] and the integrand reduction via Laurent expansion [14] implemented in
NINJA [15] and used within the GOSAM framework [16] and FORMCALC [17], are instead de-
signed to deal with several mass scales and a variety of final states. Other versatile codes are
OPENLOOPS [18] and RECOLA [19], which build one-loop amplitudes numerically by means of
recursion relations applied to Feynman diagrams and off-shell currents, then reduced by means
of COLLIER [20]. These codes were recently employed for applications involving QCD and EW
corrections.

The automated computation of physical observables at NLO accuracy, such as cross sections
and differential distribution, requires to incorporate the one-loop results for the virtual amplitudes
within a Monte Carlo framework (MC). In several recent applications, the MC provides the possi-
bility of merging multiple NLO parton-level matrix elements with parton showers. For more details
on the MC tools, we refer the reader to the talks of S. Prestel and F. Siegert at this Conference.

3. Higgs boson production in Gluon Fusion with GoSam 2.0

The GOSAM [16] framework combines automated diagram generation and algebraic manip-
ulation [21] with the integrand reduction techniques and tensorial reduction. After the generation,
the default reduction employed by GOSAM is the integrand reduction via Laurent expansion pro-
vided by NINJA. Alternatively, the tensorial decomposition provided by GOLEM95C [22] or the
d-dimensional integrand reduction as implemented in SAMURAI are also available.

The code has been employed in numerous applications at NLO QCD accuracy and studies of
BSM scenarios (see Ref. [23] for a summary), within electroweak calculations [24], and recently
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also within NNLO calculations for the production of real-virtual contributions [25]. To achieve
these results, GOSAM has been interfaced within MC tools (a detailed discussion on this topic can
be found in Ref. [26]).

As an example of application, we briefly describe the efforts that led to the calculation of NLO
QCD corrections to the associated production of a Higgs boson and three jets at the LHC in gluon
fusion in the large top-mass limit [27]. In this limit, the Higgs coupling to gluons mediated by
a top-quark loop can be described by an effective operator, leading to new Feynman rules which
contains vertices involving the Higgs field and up to four gluons. Such vertices lead to Feynman
integral whose rank exceeds the number of denominators. A first improvement in GOSAM needed
by this calculation was the upgrade of all reduction algorithms [14, 15, 28] to cope with additional
powers of the integration momentum in the numerator functions. As a warm-up process, we tested
the algorithm by computing pp→ H +2 jets in gluon fusion [29].

In order to deal with the complexity level of calculations such as pp→H+3 jets, the GOSAM

code has been further enhanced. This calculation is indeed challenging both on the side of real-
emission contributions and of the virtual corrections, which alone involve more than ten thousand
one-loop Feynman diagrams with up to rank-seven hexagons. The introduction of numerical polar-
ization vectors and the option to sum diagrams sharing the same propagators algebraically during
the generation of the code led to an enormous gain in generation time and reduction of code size.
Moreover, improvements in the performance have been achieved by exploiting the optimized alge-
braic manipulation of FORM 4.0. Concerning the reduction, the use of NINJA led to a faster and
more stable extraction of all needed coefficients.

An updated analysis appeared in [30], which contains new results and distributions for H +3
jets at NLO for a set of ATLAS-like cuts and a comparison with the NLO predictions for H+2 jets.
Very recently, new phenomenological analyses have been presented [31] which include numerical
results for a large variety of observables for both standard cuts and VBF selection cuts.

4. Beyond NLO

The Next-to-Next-to-Leading-Order (NNLO) computations are quite far from automation and
only a few computations are available for processes at hadron colliders. For a detailed discussion,
we refer to the presentation of F. Petriello in the plenary session.

At one-loop, the advantage of knowing that one complete basis of MIs is formed by scalar
one-loop functions and the availability of their analytic expression allowed the community to focus
on the development of efficient algorithms for the extraction of the coefficients multiplying each
MI. At higher-loop, a general basis of MIs is not known and they are only identified at the end
of the reduction procedure. Moreover, many MIs do not have a known analytic expression and
they should be evaluated numerically. The multi-loop reduction technique which is most often
employed is the well-known Laporta algorithm [32], based on the solution of algebraic systems of
equations obtained through integration-by-parts identities [33].

Recently, new ideas and techniques [34], along with improved version of known algorithms,
are make a huge impact, paving the road to increasingly complex NNLO calculations. The progress
in multi-loop calculations and in the computation of Feynman integrals using differential equations
are nicely reviewed in the lectures of Refs. [35]. As of now, it is not clear to what extent we will be
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able to push the available approaches before the computational resources needed become overbear-
ing. In this context, it will be also interesting to observe whether the extensions of integrand-level
techniques to higher orders will succeed to provide a reliable alternative option.

4.1 Integrand-Reduction Techniques Beyond One-Loop

The reduction at the integrand level is based on the algebraic decomposition of the numerator
function N of Eq. (2.1) in terms of the propagators in the loop, in order to identify before inte-
gration the structures that will generate the MIs, as well as terms that will vanish upon integration
of the loop momentum but are needed to establish an identity for the integrands. In this approach,
the coefficients in front of the MIs can be determined by solving a system of algebraic equations
that are obtained by the numerical evaluation of the numerator of the integrand at explicit values of
the loop-variable. The integrand reduction algorithm has been extremely successful for one-loop
calculation, and it is the engine within many of the computational tools mentioned in Section 2.

Extensions beyond one-loop, first proposed in [36], have become the topic of several stud-
ies [37], thus providing a new direction in the study of multi-loop amplitudes.

Higher-loop techniques require a proper parametrization of the residues at the multi-particle
poles [36]. As in the one-loop case, the parametric form of each polynomial residues is process-
independent and can be determined once for all from the corresponding multiple cut. However, at
higher loops, the basis of MIs is more complicated and so is the form of the residues.

In Refs. [38–40], the determination of the residues at the multiple cuts has been systematized
as a problem of multivariate polynomial division in algebraic geometry. The use of these techniques
proved that the integrand decomposition is applicable not only at one loop, as originally formulated,
but at any order in perturbation theory. The shape of the residues is uniquely determined by the
on-shell conditions, without any additional constraint. Moreover, we presented [39] a recurrence
relation which, independently of the number of loops, leads to the multi-particle pole decomposi-
tion of the integrands of the scattering amplitudes. Applications to two-loop Feynman diagrams
in QED and QCD showed that the proposed reduction algorithm can be applied to integrands with
denominators appearing with arbitrary powers [40].

5. Summary and Conclusions

Scattering amplitudes provide an ideal testing ground for many theoretical applications. A
better understanding of the mathematical properties of scattering amplitudes indeed allows for
the construction of efficient algorithms for their evaluation, and ultimately leads to higher quality
theoretical predictions to be used in the experimental analyses at particle colliders.

There is a variety of approaches and numerical tools available for one-loop calculations, which
are interfaced with Monte Carlo event generators to provide NLO predictions for processes needed
by the LHC experimental collaborations. Just like their tree-level predecessors, these codes allow
the user to compute full NLO calculations at the simple effort of providing the list of particles and
some input parameters.

Looking ahead, the focus is shifting towards the challenges presented by NNLO calculations,
which are considerably more involved. While a full automation of NNLO is still not around the
corner, there are plenty of activities and studies in the making, and the progress in the field is
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tangible, both in terms of the development of new ideas and techniques and the completion of new
calculations and phenomenological studies.
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