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1. Introduction and Fit Methodology

The phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1] produces CP violation in the
Standard Model (SM). Unitarity relations of the CKM matrix provide an excellent laboratory to test
the SM predictions, in particular the relation V ∗ubVud +V ∗cbVcd +V ∗tbVtd = 0 since many measurements
in the B and K systems can be combined for this test.

The scan method is a frequentist-based technique for fitting elements of the CKM matrix [2],
making no assumptions as to the distribution of theory errors. We account for theory uncertainties
in the QCD parameters fBs , fBs/ fBd ,BBs ,BBs/BBd , and BK and in the CKM parameters |Vub| and
|Vcb| by scanning over a plausible range of theory uncertainty using fixed grid or Monte Carlo
(MC) methods. In the baseline fit, we combine measurements of ∆md ,∆ms,εK , |Vcb|, |Vub|, |Vud |,
|Vus|, sin2β , α , γ , B(B+→ τ+ντ), B(B0

s → µ+µ−) and B(B0
s → µ+µ−) in the χ2 function:

χ
2(ρ̄, η̄ , pi, t j) =

(
〈∆md,s〉−∆md,s(ρ̄,η̄ ,pi,t j)

σ∆md,s

)2
+
(
〈|Vcb,ub,ud,us|〉−Vcb,ub,ud,us(ρ̄,η̄ ,pi,t j)

σVcb,ub,ud,us

)2

+
(
〈|εK |〉−εK(ρ̄,η̄ ,pi,t j)

σεK

)2
+
( 〈S

ψK0 〉−sin2β (ρ̄,η̄ ,pi)

σS
ψK0

)2
+
(
〈α〉−α(ρ̄,η̄ ,pi)

σα

)2

+
(
〈γ〉−γ(ρ̄,η̄ ,pi)

σγ

)2
+∑k

(
〈Mk〉−Mk(pi)

σMk

)2
+∑n

(
〈Tn〉−Tn(pi,t j)

σTn

)2
, (1.1)

where pi are measured quantities, including the Wolfenstein parameters A and λ ; the t j are QCD
parameters. Errors on the t j are split into a “statistical” and a theory error. We account for the
“statistical” error by including terms in the χ2 denoted by Tn in which the central values are taken
from lattice calculations; we perform scans over the theory errors. To account for correlations
among the observables, we add χ2 terms, denoted by Mk, that include branching fractions, other
CKM elements, Higgs, quark and B meson masses, and B meson lifetimes. Table 1 lists measured
input values for baseline fits. Table 2 summarizes all the QCD parameters including ηcc,ηtc,ηtt

and ηb. We presently do not scan over the latter parameters, but account for them in the Tn terms.
We parametrize ηcc and its uncertainty in terms of mc and αs. For each choice of a set of theory
parameters, we determine the χ2 and P(χ2 ≥ χ2

c ;n− p+2|H0)≥ 0.05 where n(p) are the number
of χ2 terms (number of fit parameters) and H0 is the test hypothesis (e.g. the SM). For fits with
P(χ2)> 5%, we plot ρ̄− η̄ contours. The overlay of all contours present the ρ̄− η̄ region allowed
in the SM. From the extrema of all displayed contours, we determine the range of UT parameters
for a given confidence interval having made no assumption as to the distribution of theory errors.
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Figure 1: Overlay of 95% CL contours in the ρ̄ − η̄ plane for the baseline fits without (left) and with NP
parameters rd and θd (right).
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Table 1: Observables used in the baseline fits [3, 4].
mt [GeV/c2] mc [GeV/c2] ∆md [ps−1] ∆ms [ps−1]

173.2±0.87 1.275±0.025 0.510±0.003 17.757±0.021

|Vcb| |Vub| |Vud | |Vus|
(4.09±0.06±0.11)×10−2 (4.15±0.1±0.48)×10−3 0.97425±0.00022 0.2252±0.0009

|Vcd | |Vcs| |Vtb|
0.23±0.11 1.006±0.023 0.97±0.08

εK sin2β α γ

(2.228±0.0011)×10−3 0.0691±0.017 (85.1+2.2
−2.0)

o (68.5+7.9
−9.0)

o

B(B+→ τ+ν) B(B0
s → µ+µ−) B(B0

d → µ+µ−)

(1.14±0.27)×10−4 (2.8+0.7
−0.6)×10−9 (3.9+1.6

−1.4)×10−10

Table 2: QCD parameters used in the fits with ”statistical" and theory uncertainties, respectively [5].
fBs [MeV] fBs/ fBd BBs BBs/BBd BK

228.7±2.0±5.5 1.311±0.046±0.076 1.205±0.009±0.019 1.053±0.04±0.064 0.758±0.0020±0.019

ηcc ηtc ηtt ηb

1.39±0.35 0.47±0.04 0.5765±0.0065 0.551±0.007

Table 3: The 95% CL ranges from baseline fits without/with B(Bs,d → µ+µ−) for UT parameters.
Parameter ρ̄ η̄ β [o] α [o] γ [o]

Baseline fit without Bs,d → µ+µ− 0.077−0.176 0.322−0.400 19.9−24.9 80.2−93.8 63.6−77.8
Baseline fit with Bs,d → µ+µ− 0.069−0.172 0.324−0.401 19.8−24.8 79.0−93.3 64.2−79.2
New physics fit with Bs,d → µ+µ− 0.052−0.168 0.294−0.509 18.2−29.9 70.0−95.1 64.2−83.4

2. Results

Figure 1 (left) shows the overlay of ρ̄ − η̄ contours for all accepted baseline fits using 24
measurements (|Vud |, |Vus|, |Vcb|, |Vcb|, |Vcd |, |Vcs|, |Vtb|, εK , ∆mBd , ∆mBs , sin2β , α , γ , fBs , BBs ,
fBs/ fBd

, BBs/BBd , BK , mt , mc, B(B+ → τ+ν), B(B0
s → µ+µ−) and B(B0

d → µ+µ−)) to fit 12
parameters (ρ̄ , η̄ , A, λ , fBs , BBs , fBs/ fBd

, BBs/BBd , BK , mt , mc and MH). Table 3 shows the 95% CL
range of the unitarity triangle (UT) parameters for baseline fits without and with B(B0

s,d→ µ+µ−).

New physics in B0
dB̄0

d mixing can be parameterized by a scale factor rd and a phase φd since

〈B̄0
d |H NP +H SM|B0〉/〈B̄0

d |H SM|B0〉 ≡ r2
d exp(2iθd) (2.1)

where H NP(H SM) represent the new physics (SM) Hamiltonian. The scale factor modifies ∆mBd

to (∆mBd )
NP = r2

d(∆mBd )
SM and (∆mBs/∆mBd )

NP = (1/r2
d)(∆mBs/∆mBd )

SM, and the phase modifies
observables containing sin2β and sin2α to sin2(β +θd) and sin2(α−θd). To test this model,
we add rd and θd to the baseline fit. Figure 1 (right) shows the resulting ρ̄ − η̄ contours for all
accepted baseline fits. The allowed region increases since the ∆mBd , ∆mBs/∆mBd , sin2β and sin2α

constraints are weakened due to compensation by the parameters rd and θd . Figure 2 shows the
rd−θd contours that are consistent with the SM prediction.
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Figure 2: Overlay of rd−θd contours. Black points show
central values; the SM prediction is at (1,0).
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Figure 3: The α−β (top) and γ−β con-
tours (bottom). Black points show central
values; the magenta band shows the world
average on β measured in (cc̄)K(∗) modes.

We further perform fits, called full fits, in which
we replace α and γ by measurements that determine
them. These consist of all branching fractions and
CP asymmetries measured in B→ PP, PV, VV modes
and measurements of decay ratios and CP asymmetries of B+ → D(∗)K+ and B+ → DK∗+,
B+→D(∗)π+ and B0→D(∗)+ρ− decays analyzed in the Giri-Grossman-Soffer-Zupan [6], Gronau-
London-Wyler [7] and Atwood-Dunietz-Soni (ADS) methods [8]. Omitting B(B+ → τ+ν) and
B(Bs,d → µ+µ−), we fit to 230 measurements to determine 104 parameters. Following the
Gronau-Rosner approach [9], we parametrize amplitudes in terms of tree, color-suppressed tree,
penguin, singlet penguin, W -annihilation/W -exchange and electroweak-penguin diagrams (up to
λ 2 beyond leading order). In full fits, possible correlations between α(γ) and β are accounted for,
which is typically not the case in our baseline fits and fits by CKMfitter [10] and UTFIT [11].

Table 4: Measurements of α from fits to
branching fractions and CP asymmetries
in B → PP,PV,VV,a1P decays and mea-
surements of γ from fits to rate ratios and
CP asymmetries in B±→ D(∗)0K±, B±→
D0K∗±, B± → D(∗)0π± and B± → D0ρ±

modes. The different γ values result from
the lowest/highest values of |Vub/Vcb|. The
magenta bar shows the world average for β

from B→ cc̄K(∗) modes.

Mode α [o] β [o] γ [o]

B→ PP,PV,
VV,a1P 85.2+2.1

−2.0 21.7+1.7
−1.6

B→ D(∗)h 30.5+2.3
−2.2 67.7+7.9

−9.2
24.8+2.0

−2.0 69.1+7.8
−8.8

We use the methodology of full fits to determine α

and γ . We fit to 184 branching fractions and CP asym-
metry measurements in B→ PP, B→ PV , B→VV and
B→ a1P modes to determine 95 parameters and extract
α −β contours at 95% CL shown in Fig. 3 (top). We
fit to 61 rate ratio and CP asymmetry measurements
in B± → D(∗)0K±, B± → D0K∗±, B± → D(∗)0π± and
B± → D0ρ± modes to determine 20 parameters and
extract γ−β contours at 95% CL shown in Fig. 3 (bot-
tom) after scanning over |Vub/Vcb|. Table 4 shows the
fit results. Both α −β and γ −β contours are consis-
tent with the world average of β = (21.9±0.7)◦ from
B→ (cc̄)K(∗) measurements [4]. Note that α and γ are
correlated with β and that γ depends on |Vub/Vcb|.

3. “Wall” Plots

We construct “Wall” plots to display the correlations among sets of three parameters. Or-
thogonal lines show the ±1δ theory error range. The outer black contours result from probability
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requirements of > 32% or > 5%. The inner black contours result from a ±1δ requirement on all
undisplayed variables. Colored solid contours result from a ±1δ requirement on the out-of-plane
variables. Colored dashed contours result from constraining the out-of-plane variables to their cen-
tral values. Black dashed contours result from constraining all undisplayed variables to their central
values. Figure 4 shows “Wall” plots for |Vub|, fBs and BBS for P(χ2)> 32% and P(χ2)> 5%.

Figure 4: Wall plots for |Vub|, fBs and BBS for P(χ2)> 5% (left) and P(χ2)> 32% (right).

4. Conclusion

Scan method baseline fits and full fits agree with the SM with no assumption as to the distri-
bution of theory errors. The latter include correlations among α (γ) and β . Dedicated fits to α and
γ yield rather precise values. A new physics model in B0

dB̄0
d mixing increases the allowed ρ̄ − η̄

region. “Wall” plots provide a means to determine whether any SM discrepancy originates from
the values of theory parameters, experimental measurements or something else.
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