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1. Introduction

Recently the Wigner distributions of quarks and gluons inside the nucleon [1, 2] have been
proposed as a tool to access the still unknown orbital angular momentum of quarks and gluons and
its contribution to the nucleon spin. The ’nucleon spin problem’ is till now one of the most intrigu-
ing problems in hadron physics that has to be understood. It was found in the EMC experiment
[3] that the quarks carry about 25 % of the nuclen spin, which suggested that a large fraction of
the contributions comes from the intrinsic spin of the quarks and gluons and their orbital angular
momentum (OAM). There have been tremendous efforts and advances both in theoretical and ex-
perimental sides to unravel the different components and contributions to the proton spin. Most
recently, a global analysis [4] including high statistics data from STAR and PHENIX collborations
at RHIC, BNL found that the gluon spin contribution may be about 35 % of the proton spin. This
result has a lot of uncertainties in the small x region. In any case, quark and gluon OAM play a
substantial role in building up the proton spin.

As issue that complicates the understanding of the nucleon spin in terms of its different com-
ponents is gauge invariance. There are two main decomposition of nucleon spin. In the so-called
cannonical decomposition [5], one writes the nucleon helicity in terms of the intrinsic quark spin
(∆q), intrinsic gluon spin (∆g) and quark and gluon OAM (lq/g). Except for the quark spin, it has
been shown that the other terms depend on the choice of the gauge. In the kinetic decomposition
of the nucleon spin [6], one writes the nucleon helicity in terms of the intrinsic quark spin (∆q),
quark OAM (Lq), and the total contribution of the gluon angular momentum (Jg). Wakamatsu [7]
separated Jg in the kinetic decomposition into an orbital part and an intrinsic part using a prescrip-
tion similar to [8]. The kinetic and canonical OAM differ in the choice of Wilson line needed for
the color gauge invariance. A physical interpretation of both types of OAM can be found in [9].

Wigner distributions, which are quasiprobabilistic distributions, are known in the context of
quantum mechanics since a long time [10]. Because of Heisenberg uncertainty principle, a quan-
tum phase space description is not possible for observables. Wigner distributions, which are joint
position and momentum space distributions do not have probabilistic interpretation. Wigner dis-
tributions for the quarks and gluons in the nucleon are 6 dimensional objects, 3 positions and 3
momentum. By integrating out one or more variables, one obtains the reduced Wigner distribu-
tions. These can have probabilistic interpretation. Wigner distributions in the light-cone or infinite
momentum frame were introduced in [11]. These are related to the generalized parton correla-
tion functions (GPCFs), which are fully unintegarted off-forward parton correlators that contain
maximum amount of information on the correlations of quarks and gluons inside the nucleon.
Integrating the GPCFs over the light cone energy k− one gets the generalized transverse momen-
tum dependent pdfs (GTMDs) [12]. These GTMDs can be expressed as Fourier transforms of the
Wigner distributions. Integrating over more variables, one can connect the Wigner distributions
to the generalized parton distributiosn (GPDs) and transverse momentum dependent distributions
(TMDs), both of which are known to give important information on the momentum and angular
momentum correlations of the quarks and gluons inside the nucleon. Thus these are called ’mother
distributions’ containing maximum information on the internal structure of the nucleons.

Wigner distributions can be related to the OAM of the quarks and gluons as well as their spin-
orbit correlations. In this way these can give informations beyond those that can be obtained from
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TMDs and GPDs. As the Wigner distributions themselves cannot be directly measured experi-
mentally, informations about them can be obtained indirectly through the measurement of other
observables. That is why model calculations of Wigner distributions are interesting as these give
valuable insight into these objects. Models in which Wigner distributions have been investigated in
the literature include constituent quark model and chiral quark soliton model [11]. Both of these are
phenomenological models of the nuclon and they do not contain any gluonic degrees of freedom.
We present a recent calculation of the Wigner distributions in a perturbative model with a gluonic
degree of freedom, namely a quark dressed with a gluon [13, 14]. We use light-front Hamiltonian
approach and express the Wigner distributions in terms of overlaps of light-front wave function
(LFWFs). The state can be thought of as a spin 1/2 relativistic composite object. This approach
gives an intuitive picture of deep inelastic processes; it is based on field theory but at the same time
keeps close contact with the parton model ideas [15], the field theoretic partons have intrinsic trans-
verse momenta and they interact. The advantage is that as there are gluonic degrees of freedom it
is possible to investigate both quark and gluon Wigner distributions.

2. Wigner distributions for the quarks and gluons

The Wigner distribution of quarks can be defined as the two-dimensional Fourier transforms
[11, 12]

ρ
[Γ](b⊥,k⊥,x,σ) =

∫ d2∆⊥
(2π)2 e−i∆⊥.b⊥W [Γ](∆⊥,k⊥,x,σ); (2.1)

where ∆⊥ is momentum transfer of the target in transverse direction and b⊥ is the impact parameter
conjugate to ∆⊥. W [Γ] is the quark-quark correlator:

W [Γ](∆⊥,k⊥,x,σ) =
〈

p+,
∆⊥
2
,σ
∣∣∣W [Γ](0⊥,k⊥,x)

∣∣∣p+,−∆⊥
2
,σ
〉

=
1
2

∫ dz−d2z⊥
(2π)3 ei(xp+z−/2−k⊥.z⊥)

〈
p+,

∆⊥
2
,σ
∣∣∣ψ(− z

2
)ΩΓψ(

z
2
)
∣∣∣p+,−∆⊥

2
,σ
〉∣∣∣

z+=0
. (2.2)

We use the symmetric frame where p+ and σ define the longitudinal momentum of the target state
and its helicity respectively. x = k+/p+ is the fraction of longitudinal momentum fraction carried
by the active quark. Ω is the gauge link needed for color gauge invariance. In this work, we use the
light-front gauge and take the gauge link to be unity. The symbol Γ is the Dirac matrix defining the
types of quark densities; we take Γ = γ+ and γ+γ5 respectively.

We denote the different Wigner distributions by ρλλ ′ [11], where λ (λ ′) is longitudinal polar-
ization of target state(quark).

ρUU(b⊥,k⊥,x) =
1
2

[
ρ
[γ+](b⊥,k⊥,x,+ez)+ρ

[γ+](b⊥,k⊥,x,−ez)
]

(2.3)

gives the Wigner distribution of unpolarized quarks in the unpolarized target state.
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ρLU(b⊥,k⊥,x) =
1
2

[
ρ
[γ+](b⊥,k⊥,x,+ez)−ρ

[γ+](b⊥,k⊥,x,−ez)
]

(2.4)

gives the distortion due to the longitudinal polarization of the target state.

ρUL(b⊥,k⊥,x) =
1
2

[
ρ
[γ+γ5](b⊥,k⊥,x,+ez)+ρ

[γ+γ5](b⊥,k⊥,x,−ez)
]

(2.5)

represents the distortion due to the longitudinal polarization of quarks.

ρLL(b⊥,k⊥,x) =
1
2

[
ρ
[γ+γ5](b⊥,k⊥,x,+ez)−ρ

[γ+γ5](b⊥,k⊥,x,−ez)
]

(2.6)

gives the distortion due to the correlation between the longitudinal polarized target state and quarks.
ez correspond to helicity of the target state.

The Wigner distribution for the gluons can be defined as [16]

xW g(x,~k⊥,~b⊥) =
∫ d2~∆⊥

(2π)2 e−i~∆⊥.~b⊥
∫ dz−d2z⊥

2(2π)3 p+
eik.z

〈
p+,

~∆⊥
2
,σ
∣∣∣Γi jF+i

(
− z

2

)
F+ j

( z
2

)∣∣∣p+,−~∆⊥
2
,σ
〉∣∣∣

z+=0
; (2.7)

We calculate Eq. (2.7) for Γi j = δ i j (W1) and Γi j = −iε i j
⊥ (W2). We choose the light-front

gauge, and like in the quark case, take the gauge link to be unity.
We consider only longitudinally polarized target state and then we have four gluon Wigner

distributions as follows, in a manner similar to quark Wigner distributions [11]
Wigner distribution of unpolarized gluon in unpolarized target state is defined as

WUU =W ↑↑1 (x,k⊥,b⊥)+W ↓↓1 (x,k⊥,b⊥); (2.8)

Wigner distribution corresponding to the distortion due to longitudinal polarization of the target:

W LU =W ↑↑1 (x,k⊥,b⊥)−W ↓↓1 (x,k⊥,b⊥); (2.9)

Wigner distribution for the distortion due to longitudinal polarization of the gluons is given by :

WUL =W ↑↑2 (x,k⊥,b⊥)+W ↓↓2 (x,k⊥,b⊥); (2.10)

and the Wigner distribution describing the correlation due to longitudinal polarization of the target
state and the gluons

W LL =W ↑↑2 (x,k⊥,b⊥)−W ↓↓2 (x,k⊥,b⊥). (2.11)

We present a calculation of the above Wigner distributions for a quark state dressed with a
gluon, in a perturbative model. The quark state of momentum p and helicity σ , can be expanded in
Fock space in terms of multi-parton light-front wave functions (LFWFs) [15]∣∣∣p+, p⊥,σ

〉
= Φ

σ (p)b†
σ (p)|0〉+ ∑

σ1σ2

∫
[d p1]

∫
[d p2]

√
16π3 p+δ

3(p− p1− p2)

Φ
σ
σ1σ2

(p; p1, p2)b†
σ1
(p1)a†

σ2
(p2)|0〉; (2.12)
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here [d p] = d p+d2 p⊥√
16π3 p+

. Φσ (p) and Φσ
σ1σ2

are the single particle (quark) and two particle (quark-

gluon) LFWFs, respectively; σ1 and σ2 are the helicities of the quark and gluon. Φσ (p) gives
the normalization of he state. The two particle LFWF is related to the boost invariant LFWF;
Ψσ

σ1σ2
(x,q⊥) = Φσ

σ1σ2

√
P+. Here we have used the relation:

p+i = xi p+, qi⊥ = ki⊥+ xi p⊥ (2.13)

and ∑i xi = 1,∑i qi⊥ = 0. These two-particle LFWFs be calculated perturbatively [15]. Using a
particular representation of the γ matrices, the LFWFs can be written in a two component formalism
[17]. For a bound state, the bound state mass M should be less than the sum of the masses of the
constituents for stability. However, we use the same mass for the bare as well as the dressed quark
[15]. As stated before, the single particle sector contributes through the normalization of the state,
which is important to get the contribution at x = 1. We restrict ourselves to the kinematic region
x < 1, and for our purpose the contribution from Φσ (p) can be taken to be 1.

(a) (b)

Figure 1: (Color online) 3D plots of the Wigner distributions ρLU . The plot (a) is in b space with k⊥ = 0.4
GeV. Plot (d) is in k space with b⊥= 0.4 GeV−1. We took ∆max = 5.0 GeV. For all the plots we kept m= 0.33
GeV, integrated out the x variable and we took ~k⊥ = k ĵ and ~b⊥ = b ĵ [13].

In Figs. 1 and 2, we have shown the 3D plots for the Wigner distributions ρLU for the quarks
and W LU for the gluons respectively in the impact parameter space (bx-by) and in momentum space
(kx-ky). Normally the upper limit of the Fourier transform should be infinite. But in our numerical
calculation, we chose an upper limit of | ∆⊥ | called ∆max. The peak of the Wigner distribution
increases in magnitude as ∆max increases. For all the plots, we have taken mass of target state to be
0.33 GeV. Also we integrated over x and divided by a normalization constant. ρLU is the distortion
of the Wigner distribution of unpolarized quarks due to the longitudinal polarization of the dressed
quark. We observe a dipole structure in b⊥ space, similar to that observed in other models. For the
gluon distribution W LU we observe a similar behaviour.

3. Orbital angular momentum of quarks and gluons

The kinetic OAM for the quarks is given in terms of the GPDs [6] as :

Lq
z =

1
2

∫
dx{x[Hq(x,0,0)+Eq(x,0,0)]− H̃q(x,0,0)}.
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(a) (b)

Figure 2: (Color online) 3D plots of the Wigner distributions W LU . Plot (a) is in b space with k⊥ = 0.4
GeV. Plot (b) is in k space with b⊥ = 0.4 GeV−1. We have taken ∆max = 5.0 GeV. For all the plots we kept
m = 0.33 GeV, integrated out the x variable and we took ~k⊥ = k ĵ and ~b⊥ = b ĵ [14].

The GPDs in the above equation are defined with the momentum transfer purely in the transverse
direction. Using the GPDs in our model, we can calculate the kinetic quark OAM. The kinetic
OAM is also related to the GTMDs [12] by the following relations:

H(x,0, t) =
∫

d2k⊥F11; (3.1)

E(x,0, t) =
∫

d2k⊥
[
−F11 +2

(k⊥.∆⊥
∆2
⊥

F12 +F13

)]
; (3.2)

H̃(x,0, t) =
∫

d2k⊥G14. (3.3)

The GTMD F14 is related to the canonical OAM as shown in [11, 18, 19]:

lq
z =−

∫
dxd2k⊥

k2
⊥

m2 F14. (3.4)

In order to calculate the gluon GTMDs we use the parametrization of in [20]. These can be
related to the ones in [12]. Using this parametrization, one can relate the gluon GTMDs to the
gluon kinetic and canonical OAM in the same way as for the quarks. In our model, the quark and
gluon OAM can be calculated directly from the results for the Wigner distributions, as these are
related to the GTMDs [13, 14]. Our results agree with [15] in the massless limit of the quark. We
also agree with [21] and [22]. In our model calculation we find that the GTMDs F14 and G11 exist
and non-zero. The result is independent of the choice of the gauge link at this order [22]. In Fig.3
we have shown the orbital angular momentum of quarks as a function of the mass as calculated in
this model. Fig. 3(a) is for the kinetic OAM and 3(b) for canonical OAM. Q is the upper limit in
the transverse momentum integration, which is the large momentum scale involved in the process.
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Figure 3: (Color online) Plots of quark OAM (a) kinetic and (b) canonical vs mass of the active quark
(GeV). Q is the upper limit of the transverse momentum in GeV [13]
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Figure 4: (Color online) Plots of gluon OAM (a) canonical and (b) kinetic vs mass of the active quark
(GeV). Q is the upper limit of the transverse momentum in GeV [14]

Similar qualitative behavior of Lq
z and lq

z are seen, however, the magnitude of the two OAM differs,
this is due to the gluonic degrees of freedom in the model. In Figs. 4(a) and 4(b) we show the
canonical and the kinetic gluon OAM respectively as a function of the quark mass. As in the quark
case, we see that the magnitude of both the OAM decreases with increasing mass of target state.

The correlation between the quark spin and its OAM is given by [11, 23],

Cq
z =

∫
dxd2k⊥

k2
⊥

m2 G11. (3.5)

In this model F14=−G11, the above correlation is the same as the canonical OAM for the
quarks. The gluon spin-orbit correlations can be related to the gluon GTMDs in a way similar to
the above. Unlike for the quarks, canonical gluon OAM and spin-orbit correlations are different
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in this model. Another point to note is that the spin-orbit correlation for the quark in the dressed
quark is negative. This is opposite to what is observed in chiral quark-soliton model and constituent
quark model, namely here the quark spin is anti-aligned with its OAM.

4. Conclusion

We presented a recent calculation of the Wigner distributions for quarks and gluons. We took a
simple composite spin-1/2 system which has a gluonic degree of freedom, namely a quark dressed
with a gluon. We calculated the Wigner distributions both for unpolarized and longitudinally po-
larized target and quarks and gluons and investigated the correlations in transverse momentum and
position space. We compared and contrasted the results for the quark distributions with calcula-
tions in light cone constituent quark model and light-cone chiral quark soliton model. For the gluon
Wigner distributions, ours [14] are the first results. We also calculated the kinetic and canonical
quark and gluon OAM and the spin-orbit correlations.
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