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1. Introduction

In the description of hadron structure, transverse momentum-dependent parton distribution
functions [1] (TMDs) play a role complementary to generalized parton distributions (GPDs).
Whereas GPDs encode information about the transverse spatial distribution of partons, TMDs
contain information about the transverse momentum distribution of partons. As detailed further
below, the definition of TMDs involves a number of subtletiesnot encountered in the case of
GPDs, which also must be taken into account in formulating corresponding Lattice QCD calcu-
lational schemes. Cast in a Lorentz frame in which the hadronof massmh propagates with a large
momentum in 3-direction,P+ ≡ (P0 + P3)/

√
2 ≫ mh, the quark momentum components scale

such that TMDs are principally functionsf (x,kT) of the quark longitudinal momentum fraction
x = k+/P+ and the quark transverse momentum vectorkT , with the dependence on the component
k− ≡ (k0−k3)/

√
2≪mh becoming ignorable in this limit.f (x,kT) will thus be regarded as having

been integrated overk−.
Experimentally, TMDs manifest themselves in angular asymmetries observed in processes

such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES and JLab [2–4], and that has motivated
targeting a significant part of the physics program at futureexperiments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed electron-ion collider (EIC). To relate the
experimental signature to the hadron structure encoded in TMDs, a suitable factorization frame-
work is required. One possible such framework which is particularly well-suited for connecting
phenomenology to a Lattice QCD calculation has been advanced in [5–8]. Factorization in the
TMD context is considerably more involved than standard collinear factorization, with the result-
ing TMDs in general being process-dependent, via initial and/or final state interactions between the
struck quark and the hadron remnant.

In the following, a review of an ongoing program of evaluating TMD observables within Lat-
tice QCD is presented. In laying out the scheme by which the phenomenological definition of
TMDs can be cast into a form amenable to lattice evaluation, challenges faced by such calculations
are highlighted. Recent progress in meeting those challenges is reviewed, using selected TMD ob-
servables as examples, in particular time-reversal odd (T-odd) observables such as the Sivers and
Boer-Mulders shifts. A detailed account of some aspects of this work was presented in [9,10].

2. Definition of TMD observables

The fundamental correlator defining TMDs is of the form

Φ[Γ](x,kT ,P,S, . . .) =

∫
d2bT

(2π)2

∫
d(b·P)

(2π)P+
exp(ix(b·P)− ibT ·kT)

Φ̃[Γ]
unsubtr.(b,P,S, . . .)

S̃ (b2, . . .)

∣∣∣∣∣
b+=0

(2.1)

with

Φ̃[Γ]
unsubtr.(b,P,S, . . .) ≡ 1

2
〈P,S| q̄(0) Γ U [0, . . . ,b] q(b) |P,S〉 (2.2)

whereSdenotes the hadron spin andΓ an arbitraryγ-matrix structure. Heuristically, the Fourier-
transformed bilocal quark bilinear operator counts quarksof momentumk, with Γ controlling the
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spinor components involved. However, gauge invariance additionally enforces the introduction of
the gauge connectionU , the precise path of which is not specified at this point; its choice will be
guided by the physical process under consideration. In turn, the presence ofU introduces diver-
gences additional to the wave function renormalizations ofthe quark operators (this is indicated
by the subscript “unsubtr.”); these divergences accordingly are compensated by the additional “soft
factor” S̃ . Here,S̃ does not need to be specified in detail, since only appropriate ratios in which
the soft factors cancel will ultimately be considered. Finally, Φ[Γ](x,kT ,P,S, . . .) is, as noted further
above, a function only of the three quark momentum components contained inx andkT , whereas
the small componentk− is integrated over; thus, in its Fourier transform, the conjugate component
b+ is set to zero, as written in (2.1).

Decomposing the correlatorΦ[Γ](x,kT ,P,S, . . .) into the relevant Lorentz structures yields the
TMDs as coefficient functions. Quoting only the structures relevant for the following discussion,

Φ[γ+] = f1−
[

εi j kiSj

mh
f⊥1T

]

odd
(2.3)

Φ[iσ i+γ5] = Sih1 +
(2kik j −k2

Tδi j )Sj

2m2
h

h⊥1T +
Λki

mh
h⊥1L +

[
εi j k j

mh
h⊥1

]

odd
(2.4)

whereΛ denotes the hadron helicity (i.e.,S+ = ΛP+/mh, S− = −Λmh/2P+) for hadrons with
spin. In particular, the two TMDsf⊥1T andh⊥1 are odd under time reversal, and can only arise if a
mechanism is operative which breaks time-reversal invariance. The former TMD, characterizing
the unpolarized distribution of quarks in a transversely polarized hadron, is the Sivers function,
whereas the latter TMD, characterizing the distribution oftransversely polarized quarks in an un-
polarized hadron, is the Boer-Mulders function.

The above definition needs to be embedded into a factorization framework which connects
TMDs to a physical process alongside other elements of the process, such as the hard, perturbative
vertex and possibly a fragmentation function describing the hadronization of the struck quark. For
selected processes, including the SIDIS and DY processes, factorization arguments have indeed
been constructed, one possible approach having been advanced, e.g., in [5–8]. A crucial aspect in
the description of, e.g., SIDIS is the inclusion of final-state gluon exchanges between the struck
quark and the hadron remnant. These final state effects breaktime-reversal invariance and thus
lead to nontrivial T-odd TMDs. At a formal level, a resummation of these gluon exchanges in the
spirit of an eikonal approximation yields a Wilson line approximately following the trajectory of
the struck quark, close to the light cone. This motivates a specific choice for the gauge connection
between the quark operators in (2.2). Namely, parallel Wilson lines are attached to both of the
quark operators, extending to large distances along a direction v close to the light cone; at the far
end, these lines are connected by a Wilson line in theb direction to maintain gauge invariance. The
result is a staple-shaped connectionU [0,ηv,ηv+ b,b], where the path links the positions in the
argument ofU with straight line segments, andη parametrizes the length of the staple. Formally,
thus, it is the introduction of the additional vectorv which breaks the symmetry under time reversal
and makes nonvanishing Sivers and Boer-Mulders effects possible.

At first sight, the most convenient choice for the staple directionv would seem to be a light-like
vector. However, beyond tree level, this introduces rapidity divergences which require regulariza-
tion. One advantageous way to accomplish this is to takev slightly off the light cone into the
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space-like region [5, 6], with perturbative evolution equations governing the approach to the light
cone [7]. Within this scheme, common TMDs describe both SIDIS and DY, except that in the DY
process, it is initial state interactions which play a crucial role; correspondingly, the staple direction
v is inverted and the T-odd TMDs acquire a minus sign. A scheme in whichv (along with the quark
operator separationb) is generically space-like is also attractive from the point of view of Lattice
QCD, as discussed further below. It will thus constitute thestarting point for the development of
the lattice calculation. A useful parameter characterizing how closev is to the light cone is the
Collins-Soper evolution parameter

ζ̂ = v·P/(|v| |P|) , (2.5)

in terms of which the light cone is approached forζ̂ → ∞.
The correlator (2.2) can be decomposed in terms of invariantamplitudesÃiB. Listing only the

components relevant for the Sivers and Boer-Mulders effects,

1
2P+

Φ̃[γ+]
unsubtr. = Ã2B + imhεi j biSj Ã12B (2.6)

1
2P+

Φ̃[iσ i+γ5]
unsubtr. = imhεi j b j Ã4B−SiÃ9B− imhΛbiÃ10B +mh[(b·P)Λ−mh(bT ·ST)]bi Ã11B . (2.7)

These amplitudes are useful in that they can be evaluated in any desired Lorentz frame, including
the frame which is particularly suited for the lattice calculation. On the other hand, in view of (2.3)-
(2.4), they are closely related to Fourier-transformed TMDs. Performing the appropriate algebra,
and quoting only the components necessary for defining the Sivers and Boer-Mulders shifts below1,

f̃ [1](0)
1 (b2

T , ζ̂ , . . . ,ηv·P) = 2Ã2B(−b2
T ,b·P = 0, ζ̂ ,ηv·P)/S̃ (b2, . . .) (2.8)

f̃⊥[1](1)
1T (b2

T , ζ̂ , . . . ,ηv·P) = −2Ã12B(−b2
T ,b·P = 0, ζ̂ ,ηv·P)/S̃ (b2, . . .) (2.9)

h̃⊥[1](1)
1 (b2

T , ζ̂ , . . . ,ηv·P) = 2Ã4B(−b2
T ,b·P = 0, ζ̂ ,ηv·P)/S̃ (b2, . . .) (2.10)

where the generic Fourier-transformed TMD2 is defined as [11]

f̃ [1](n)(b2
T , . . .) = n!

(
− 2

m2
h

∂b2
T

)n∫ 1

−1
dx

∫
d2kT eibT ·kT f (x,k2

T , . . .) . (2.11)

ThebT → 0 limit formally yields kT -moments of TMDs. However, this limit contains additional
singularities, which one can view as being regulated by a finitebT . Here, results will only be given
at finite bT . Note the presence of the soft factors̃S on the right-hand sides of (2.8)-(2.10). One
can construct observables in which the soft factors cancel by normalizing the (Fourier-transformed)
Sivers and Boer-Mulders functions (2.9) and (2.10) by the unpolarized TMD (2.8), which essen-
tially counts the number of valence quarks. Thus, one definesthe “generalized Sivers shift”

〈ky〉TU(b2
T , . . .) ≡ mh

f̃⊥[1](1)
1T (b2

T , . . .)

f̃ [1](0)
1 (b2

T , . . .)
= −mh

Ã12B(−b2
T ,0, ζ̂ ,ηv·P)

Ã2B(−b2
T ,0, ζ̂ ,ηv·P)

(2.12)

which is the regularized, finite-bT generalization of the “Sivers shift”

mh
f̃⊥[1](1)
1T (0, . . .)

f̃ [1](0)
1 (0, . . .)

=

∫
dx

∫
d2kT kyΦ[γ+](x,kT ,ST = (1,0))∫

dx
∫

d2kT Φ[γ+](x,kT ,ST = (1,0))
, (2.13)

1The treatment can be readily expanded to nonzerob·P, providing access to thex-dependence of TMDs.
2Advantages of analyzing experimental data in terms of Fourier-transformed TMDs have been discussed in [12].
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which, in view of the right-hand side, formally represents the average transverse momentum of
unpolarized (“U ”) quarks orthogonal to the transverse (“T”) spin of the hadron, normalized to the
corresponding number of valence quarks. In the interpretation of (2.13), it should be noted that the
numerator sums over the contributions from quarks and antiquarks, whereas the denominator con-
tains the difference between quark and antiquark contributions, thus giving the number of valence
quarks. Analogously, one can also extract the generalized Boer-Mulders shift

〈ky〉UT(b2
T , . . .) = mh

Ã4B(−b2
T ,0, ζ̂ ,ηv·P)

Ã2B(−b2
T ,0, ζ̂ ,ηv·P)

. (2.14)

Besides the soft factors, the ratios (2.12) and (2.14) also cancel multiplicative wave function renor-
malization constants attached to the quark operators in (2.2). It should be emphasized that the
construction presented up to this point has been developed within continuum QCD; transferring
it verbatim to Lattice QCD constitutes a working assumptionwhich ultimately requires further
consideration. In particular, the breaking of space-time symmetries engendered by the lattice dis-
cretization may imply changes to the purely multiplicativenature of the soft factors and renormal-
ization constants exhibited above, and thus invalidate thecancellations invoked in the construction
of the ratios (2.12) and (2.14). Pending a foundational investigation of these issues within the lattice
formulation, empirical insight into possible renormalization effects can be obtained by studying the
stability of TMD ratios such as (2.12) and (2.14) under substantial changes of the lattice discretiza-
tion. This constitutes one of the topics addressed in the presentation of numerical results below.

3. Lattice calculational scheme

The formal framework laid out above provides all the necessary elements for a Lattice QCD
evaluation of generalized shifts such as (2.12) and (2.14).One calculates hadron matrix elements of
the type (2.2) and then decomposes them into invariant amplitudes, as given in (2.6)-(2.7). For this
to be possible, it is crucial to work in a scheme where the four-vectorsb andv are generically space-
like, for the following reason: By employing a Euclidean time coordinate to project out hadron
ground states via Euclidean time evolution, Lattice QCD cannot straightforwardly accomodate
operators containing Minkowski time separations. The operator of which one takes matrix elements
thus has to be defined at a single time. Only if bothb andv are space-like is there no obstacle to
boosting the problem to a Lorentz frame in whichb andv are purely spatial, and evaluating̃Φ[Γ]

unsubtr.

in that frame. The results extracted for the invariant amplitudesÃiB are then immediately valid also
in the original frame in which (2.2) was initially defined, thus completing the determination of
quantities of the type (2.12) and (2.14).

Since, in a numerical lattice calculation, the staple extent η necessarily remains finite, two
extrapolations must be performed from the generated data, namely, the one to infinite staple length,
η → ∞, and the extrapolation of the staple direction towards the light cone,ζ̂ → ∞. As discussed
below, the former extrapolation is fairly straightforward. On the other hand, the extrapolation
ζ̂ → ∞ constitutes a considerable challenge. Given thatv is purely spatial in the Lorentz frame
used for the lattice calculation, the accessible range ofζ̂ is determined by the available hadron
spatial momentaP (in units of the hadron mass), cf. (2.5). The numerical signal achieved in lattice
calculations rapidly deteriorates with rising hadron momentum, and thus only a very limited set

5
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Figure 1: Generalized Boer-Mulders shift in a pion as a function of staple extent at fixed quark separation
bT and Collins-Soper evolution parameterζ̂ (left); and as a function ofbT in theη → ∞ SIDIS limit, at three
different values of̂ζ (right).
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Figure 2: Generalized Boer-Mulders shift in a pion in the SIDIS limit as a function of Collins-Soper evolu-
tion parameter̂ζ at fixedbT (left); and as a function of 1/ζ̂ together with fits using the formc+d/ζ̂ (right).
Shown are both the full shift (filled symbols) as well as a partial contribution (open symbols), as detailed in
the main text. Fit curves are for separate fits to the two cases; the extrapolated data point shown with a circle
symbol results from a simultaneous fit to both.

of ζ̂ can be accessed. Data from a dedicated study of the Boer-Mulders shift in a pion [10] are
discussed below to address this challenge; the lower mass ofthe pion compared to the nucleon
facilitates reaching higher̂ζ and makes a controlled extrapolation possible.

Finally, a general challenge faced by Lattice QCD calculations is reaching the physical pion
mass. The computational expense of treating quark masses corresponding to the physical point has
hitherto precluded the generation of lattice TMD data at that point. Instead, data are produced at
artificially high pion masses. To also obtain preliminary insight into the pion mass dependence of
TMD observables, data at differing pion masses are juxtaposed below.

4. Numerical results

Focusing first on the issue of̂ζ -extrapolation, Figs. 1 and 2 display data for the generalized
Boer-Mulders shift (2.14) in a pion [10], obtained in a mixedaction scheme employing domain wall
valence quarks on a MILC 2+1-flavor asqtad quark ensemble with a lattice spacing ofa = 0.12fm
and a pion mass ofmπ = 518MeV. In the pion case, the isovector quark combination vanishes;
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the shown data are foru-quarks alone, with the corresponding disconnected contributions omitted.
Fig. 1 (left) exhibits results obtained at a given quark separation bT and a given staple direction
characterized bŷζ , as a function of the staple extent. The T-odd behavior of theobservable is
evident, withη → ∞ corresponding to the SIDIS limit, whereasη →−∞ yields the DY limit. The
data level off to approach clearly identifiable plateaux as the staple length grows. The limiting
SIDIS and DY values, represented by the open symbols, are extracted by imposing antisymmetry
in η , allowing one to appropriately average theη →±∞ plateau values. Fig. 1 (right) summarizes
the SIDIS limit values as a function ofbT for three differentζ̂ . Remarkably, thebT -dependence of
the Boer-Mulders shift flattens aŝζ is increased, and the data for differentζ̂ approach each other
at largebT . It would be useful to understand this behavior in detail. Fig. 2 focuses on a particular
value ofbT , displaying theζ̂ -dependence of both the full Boer-Mulders shift as well as a certain
partial contribution which vanishes atζ̂ = 0, but dominates the quantity at largeζ̂ ; comparison of
the full Boer-Mulders shift with the partial contribution thus can give an indication of convergence
towards the largêζ limit. For further details, cf. [9,10]. The partial contribution already furnishes
roughly one half of the full shift at the highestζ̂ reached, signaling that the calculation has covered
a significant part of the evolution to largêζ . The right-hand panel of Fig. 2 shows an extrapolation
to the largeζ̂ limit using the functional formc+ d/ζ̂ (analogous fits using the formc+ d/ζ̂ 2 are
seen to be inferior [10]). Given that the range ofζ̂ accessed numerically does not clearly overlap
with the regime in which perturbative evolution equations become applicable, this form should be
viewed as no more than a physically motivated ad hoc ansatz. The fits to the full and partial data
converge to compatible values, agreeing also with a combined fit to both data sets. This buttresses
confidence in the extrapolations and demonstrates that lattice calculations can achieve a signal for
the Boer-Mulders shift of sufficient quality such that it survives taking theζ̂ → ∞ limit.

Turning to the issue of the dependence of TMD ratios on the lattice discretization, which
provides an empirical test of whether renormalization effects indeed cancel in such observables,
Figs. 3 and 4 show representative results for the generalized Sivers shift (2.12) in the nucleon.
Results for the isovector,u− d quark combination are displayed; in this channel, couplings of
the operator insertion to disconnected quark loops in the nucleon, which have not been evaluated,
cancel. The figures juxtapose results obtained on a RBC/UKQCD 2+1-flavor domain wall fermion
ensemble featuring a lattice spacing ofa= 0.084fm and a pion mass ofmπ = 297MeV with results
obtained on a 2+1-flavor clover fermion ensemble provided byK. Orginos and collaborators in the
Jefferson Lab lattice group; the latter has a lattice spacing of a = 0.114fm and a pion mass of
mπ = 317MeV. The two ensembles thus have very similar pion masses, but differ substantially in
the lattice discretization. The domain wall fermion ensemble not only features a considerably finer
spacing, but also respects chiral symmetry to the largest extent possible, whereas the clover fermion
ensemble strongly breaks the continuum symmetry. Fig. 3, analogously to Fig. 1 (right), shows the
SIDIS limit results as a function ofbT at a givenζ̂ , where the shaded area below|bT |= 2a indicates
the region where the data may be significantly affected by finite lattice cutoff effects. Fig. 4,
analogously to Fig. 2 (left), displays the dependence of theSIDIS limit results on the Collins-
Soper evolution parameter̂ζ , with |bT | kept fixed. As in Fig. 2, both the full Sivers shift as well
as a certain partial contribution are exhibited, cf. the comments in connection with that figure. The
results for the Sivers shift obtained on the two ensembles inquestion are compatible, despite the
considerable differences in terms of discretization scheme. This suggests that the renormalization
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Figure 3: Generalized Sivers shift in a nucleon as a function ofbT in theη → ∞ SIDIS limit, at a fixedζ̂ ,
in a fine lattice domain wall fermion calculation (left) and acoarse lattice clover fermion calculation (right),
cf. main text for details.
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Figure 4: Generalized Sivers shift in a nucleon as a function ofζ̂ in theη → ∞ SIDIS limit, at a fixedbT ,
in a fine lattice domain wall fermion calculation (left) and acoarse lattice clover fermion calculation (right).
Shown are both the full Sivers shift and a partial contribution, analogous to Fig. 2; cf. main text for details.

effects embodied in soft factors and wave function renormalization constants indeed cancel in TMD
ratios also in the lattice formulation.

Finally, a preliminary indication of the pion mass dependence of TMD ratios is given by the
juxtapositions in Figs. 5 and 6. These compare the domain wall fermion data for the Sivers shift
in the nucleon atmπ = 297MeV already displayed in Figs. 3 (left) and 4 (left) with corresponding
nucleon Sivers shift data generated within the mixed actionscheme already employed in obtaining
the pion TMD results atmπ = 518MeV in Figs. 1 and 2. Figs. 5 and 6 are analogous to Figs. 3
and 4, respectively, displaying the SIDIS limit data eitheras a function ofbT at a givenζ̂ , or as
a function of the Collins-Soper evolution parameterζ̂ with |bT | kept fixed. Except for apparent
discretization artefacts at small|bT | in Fig. 5, the results at the two pion masses are compatible;
no significant variation of the Sivers shift is seen as the pion mass is changed. Recent preliminary
analysis of data obtained on another RBC/UKQCD 2+1-flavor domain wall fermion ensemble at
a pion mass ofmπ = 170MeV indicates that this behavior persists even as one approaches the
physical point more closely [13], although it should be noted that these newer data still display
sizeable statistical uncertainties.
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Figure 5: Generalized Sivers shift in a nucleon as a function ofbT in theη → ∞ SIDIS limit, at a fixedζ̂ , in
a domain wall fermion calculation atmπ = 297MeV (left) and a mixed action calculation atmπ = 518MeV
(right), cf. main text for details.
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Figure 6: Generalized Sivers shift in a nucleon as a function ofζ̂ in theη → ∞ SIDIS limit, at a fixedbT , in
a domain wall fermion calculation atmπ = 297MeV (left) and a mixed action calculation atmπ = 518MeV
(right). Shown are both the full Sivers shift and a partial contribution, analogous to Fig. 2; cf. main text for
further details.

5. Summary and outlook

TMDs can be formally defined in terms of hadronic matrix elements of quark bilocal op-
erators containing staple-shaped gauge connections, which incorporate final/initial state effects in
SIDIS/DY processes. Evaluating such matrix elements within Lattice QCD, one encounters several
challenges. For one, to cancel multiplicative soft factorsand renormalization constants, appropriate
ratios of Fourier-transformed TMDs (“generalized shifts”, cf. (2.12) and (2.14)) are constructed.
However, the breaking of space-time symmetries engenderedby the lattice discretization may im-
ply changes to the purely multiplicative nature of the soft factors and renormalization constants
contained in the continuum definition; this possibility wasaddressed empirically by studying the
universality of TMD ratios under changes of the discretization scheme. Secondly, the gauge con-
nection staples are generically taken off the light cone to regularize rapidity divergences, with the
Collins-Soper parameter̂ζ controlling the approach to the light cone. A dedicated study of pion
TMD ratios demonstrated that the attendant extrapolation in ζ̂ is feasible within Lattice QCD cal-
culations. Thirdly, TMD calculations must ultimately approach the physical pion mass; the pion
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mass dependence of TMD ratios has been explored, and no significant variations with pion mass
have hitherto been observed. These results buttress the ongoing program of calculating TMD ob-
servables within Lattice QCD presented here. Beyond the TMDobservables discussed above, the
developed methods will also be useful to study generalized observables containing a nonzero mo-
mentum transfer in (2.2), which can be related to quark orbital angular momentum in the nucleon,
since they provide mixed position and momentum informationin the transverse plane.
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