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1. Introduction

In the description of hadron structure, transverse monmesttependent parton distribution
functions [1] (TMDs) play a role complementary to genemdizparton distributions (GPDs).
Whereas GPDs encode information about the transversealspairibution of partons, TMDs
contain information about the transverse momentum didigh of partons. As detailed further
below, the definition of TMDs involves a number of subtletiest encountered in the case of
GPDs, which also must be taken into account in formulatingesponding Lattice QCD calcu-
lational schemes. Cast in a Lorentz frame in which the hadfanassm, propagates with a large
momentum in 3-directionP* = (P° + P3)/y/2 > my, the quark momentum components scale
such that TMDs are principally functionx, kr) of the quark longitudinal momentum fraction
x = k" /P* and the quark transverse momentum vek{qwith the dependence on the component
k™ = (k% — k%) /v/2 < my becoming ignorable in this limitf (x, kr ) will thus be regarded as having
been integrated ovér .

Experimentally, TMDs manifest themselves in angular aswytnies observed in processes
such as semi-inclusive deep inelastic scattering (SIDi#)the Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES ahdJt4], and that has motivated
targeting a significant part of the physics program at fugKeeriments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed eledtno collider (EIC). To relate the
experimental signature to the hadron structure encodedbDsI a suitable factorization frame-
work is required. One possible such framework which is paldirly well-suited for connecting
phenomenology to a Lattice QCD calculation has been addamcgs—8]. Factorization in the
TMD context is considerably more involved than standardireedr factorization, with the result-
ing TMDs in general being process-dependent, via initidlanfinal state interactions between the
struck quark and the hadron remnant.

In the following, a review of an ongoing program of evalugtiiMiD observables within Lat-
tice QCD is presented. In laying out the scheme by which thenpimenological definition of
TMDs can be cast into a form amenable to lattice evaluatiballenges faced by such calculations
are highlighted. Recent progress in meeting those chakeisyreviewed, using selected TMD ob-
servables as examples, in particular time-reversal odatl(l)-observables such as the Sivers and
Boer-Mulders shifts. A detailed account of some aspecthisfwork was presented in [9, 10].

2. Definition of TMD observables

The fundamental correlator defining TMDs is of the form

“d%r [db-P) . Dl rsuuP.PS )
[r] — P _ . unsubtr!
ol l(x,kr,PS...) _/ 2nz ) amp- exp(ix(b-P) —ibt - kr) 57£(b2,...) . 2.1)
with N 1
Plnsuou(D:P.S ) = 5 (RS GO T Z[0,....b q(b) IR (2.2)

whereS denotes the hadron spin ahdan arbitraryy-matrix structure. Heuristically, the Fourier-
transformed bilocal quark bilinear operator counts quafk®iomenturk, with I controlling the
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spinor components involved. However, gauge invariancétiadedlly enforces the introduction of
the gauge connectio? , the precise path of which is not specified at this point; fitsice will be
guided by the physical process under consideration. In thmpresence o introduces diver-
gences additional to the wave function renormalizationthefquark operators (this is indicated
by the subscript “unsubtr.”); these divergences accotdiage compensated by the additional “soft
factor” .#. Here,.# does not need to be specified in detail, since only apprepréios in which
the soft factors cancel will ultimately be considered. Finab[™!(x kr,P,S....) is, as noted further
above, a function only of the three quark momentum compenesntained irx andky, whereas
the small componerit™ is integrated over; thus, in its Fourier transform, the agaje component
bt is set to zero, as written in (2.1).

Decomposing the correlatap!"! (x,kr,P,S ...) into the relevant Lorentz structures yields the
TMDs as coefficient functions. Quoting only the structurglevant for the following discussion,

oIVl — f, [Siinisi flLT] 2.3)
odd
i ki —k2&))S;, | Ak gk
q)[|a+y5] — Sh ( J T2 L hi JRVITNE 2.4
Shy+ ong 1T+_mn 1L+ 1 » (2.4)

where A denotes the hadron helicity (i.657 = AP" /my,, S~ = —Am,/2P*) for hadrons with
spin. In particular, the two TMD$;; andh; are odd under time reversal, and can only arise if a
mechanism is operative which breaks time-reversal inmaga The former TMD, characterizing
the unpolarized distribution of quarks in a transversellapped hadron, is the Sivers function,
whereas the latter TMD, characterizing the distributiorirahsversely polarized quarks in an un-
polarized hadron, is the Boer-Mulders function.

The above definition needs to be embedded into a factonzétionework which connects
TMDs to a physical process alongside other elements of theeps, such as the hard, perturbative
vertex and possibly a fragmentation function describirggtthdronization of the struck quark. For
selected processes, including the SIDIS and DY procesaewyrization arguments have indeed
been constructed, one possible approach having been adlyang., in [5-8]. A crucial aspect in
the description of, e.g., SIDIS is the inclusion of finaltstgluon exchanges between the struck
quark and the hadron remnant. These final state effects bireakreversal invariance and thus
lead to nontrivial T-odd TMDs. At a formal level, a resumnoatiof these gluon exchanges in the
spirit of an eikonal approximation yields a Wilson line amgmately following the trajectory of
the struck quark, close to the light cone. This motivatesezi§ip choice for the gauge connection
between the quark operators in (2.2). Namely, parallel d¥ilénes are attached to both of the
quark operators, extending to large distances along atidinee close to the light cone; at the far
end, these lines are connected by a Wilson line irbtbigection to maintain gauge invariance. The
result is a staple-shaped connecti@ti0, nv,nv+ b, b|, where the path links the positions in the
argument ofzZ with straight line segments, amgdparametrizes the length of the staple. Formally,
thus, it is the introduction of the additional vectowhich breaks the symmetry under time reversal
and makes nonvanishing Sivers and Boer-Mulders effectsildes

At first sight, the most convenient choice for the stapleddiom v would seem to be a light-like
vector. However, beyond tree level, this introduces rapidivergences which require regulariza-
tion. One advantageous way to accomplish this is to takbghtly off the light cone into the
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space-like region [5, 6], with perturbative evolution etijpras governing the approach to the light
cone [7]. Within this scheme, common TMDs describe both SiBihd DY, except that in the DY
process, itis initial state interactions which play a calioble; correspondingly, the staple direction
vis inverted and the T-odd TMDs acquire a minus sign. A schemehichv (along with the quark
operator separatiob) is generically space-like is also attractive from the poifview of Lattice
QCD, as discussed further below. It will thus constitute gtating point for the development of
the lattice calculation. A useful parameter charactegiziiow closev is to the light cone is the
Collins-Soper evolution parameter A

{=v-P/(MIP]), (2.5)

in terms of which the light cone is approached lfor—> 0o,
The correlator (2.2) can be decomposed in terms of invaaamlitudesAig. Listing only the
components relevant for the Sivers and Boer-Mulders effect

1 - - ~
Z,.ﬁq’[ufs]ubtr. = Aos+1Mnéi; biSiAwze (2.6)
1 glieyl

557 Punsubir. = IMnéi bjAs — SAgs — imhAbiAgos + my[(b-P)A —my(br - Sr)lbiAis . (2.7)

These amplitudes are useful in that they can be evaluateayidesired Lorentz frame, including

the frame which is particularly suited for the lattice cddtion. On the other hand, in view of (2.3)-

(2.4), they are closely related to Fourier-transformed T Berforming the appropriate algebra,
and quoting only the components necessary for defining thersSand Boer-Mulders shifts beldw

fl[l](o)(b%,z,...,nv-P) = 2Ap(—b2,b-P=0,{,nv-P)/Z(K?,...) (2.8)
FLU@ W2 72 . nv-P) = —2Aum(~b2,b-P=0,¢,nv-P)/Z(b?,...) (2.9)
RO B2 ¢ nv-P) = 2As(—b2.b-P=0,¢,nv-P)/.7(K2,..)) (2.10)
where the generic Fourier-transformed THB defined as [11]
UM (2 )= <_£az>n/1 dx/dszeibT‘kT F(x,k2,...) . (2.11)
m ) S

The bt — 0 limit formally yields kr-moments of TMDs. However, this limit contains additional

singularities, which one can view as being regulated by gfiri. Here, results will only be given

at finite br. Note the presence of the soft factoré on the right-hand sides of (2.8)-(2.10). One

can construct observables in which the soft factors cancebbmalizing the (Fourier-transformed)

Sivers and Boer-Mulders functions (2.9) and (2.10) by thealarized TMD (2.8), which essen-

tially counts the number of valence quarks. Thus, one defire%generalized Sivers shift”
fEOm2 ) A1zs(—b2.0,Z,nv-P)

: = 1 . . . = .
WoroBr ) =M@ e ) T ™ Ran(88.0.4.0v-P) #12

which is the regularized, finiteyr generalization of the “Sivers shift”

fat®eo,...)  fdx/ dke k@'l (xkr, St = (1,0))

0, )~ Jdx]dks @V (xkr,Sr = (1,0))

IThe treatment can be readily expanded to nonbeR) providing access to thedependence of TMDs.
2Advantages of analyzing experimental data in terms of leoudransformed TMDs have been discussed in [12].

(2.13)
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which, in view of the right-hand side, formally represerite tiverage transverse momentum of
unpolarized (U") quarks orthogonal to the transversd {J spin of the hadron, normalized to the
corresponding number of valence quarks. In the interpogtat§ (2.13), it should be noted that the
numerator sums over the contributions from quarks and aati, whereas the denominator con-
tains the difference between quark and antiquark contadbst thus giving the number of valence
quarks. Analogously, one can also extract the generalized-Blulders shift

§4B(—b%,0,€,r]V' P) )
AZB(_b%UO»Zvr’V' P)

Besides the soft factors, the ratios (2.12) and (2.14) alscal multiplicative wave function renor-
malization constants attached to the quark operators &).(at should be emphasized that the
construction presented up to this point has been develojthveontinuum QCD; transferring
it verbatim to Lattice QCD constitutes a working assumptigmich ultimately requires further
consideration. In particular, the breaking of space-tiyraraetries engendered by the lattice dis-
cretization may imply changes to the purely multiplicathegure of the soft factors and renormal-
ization constants exhibited above, and thus invalidatedmeellations invoked in the construction
of the ratios (2.12) and (2.14). Pending a foundationalstigation of these issues within the lattice
formulation, empirical insight into possible renormatina effects can be obtained by studying the
stability of TMD ratios such as (2.12) and (2.14) under safitsal changes of the lattice discretiza-
tion. This constitutes one of the topics addressed in thegptation of numerical results below.

(ky)ut (bF,...) = my (2.14)

3. Lattice calculational scheme

The formal framework laid out above provides all the neagseements for a Lattice QCD
evaluation of generalized shifts such as (2.12) and (2Q4dA& calculates hadron matrix elements of
the type (2.2) and then decomposes them into invariant tudpk, as given in (2.6)-(2.7). For this
to be possible, itis crucial to work in a scheme where the-f@atorsb andv are generically space-
like, for the following reason: By employing a Euclidean #moordinate to project out hadron
ground states via Euclidean time evolution, Lattice QCDncarstraightforwardly accomodate
operators containing Minkowski time separations. The apeof which one takes matrix elements
thus has to be defined at a single time. Only if bbthndv are space-like is there no obstacle to
boosting the problem to a Lorentz frame in whizhndv are purely spatial, and evaluatiﬁjﬂsubtr_
in that frame. The results extracted for the invariant amdésﬁqg are then immediately valid also
in the original frame in which (2.2) was initially defined,uth completing the determination of
guantities of the type (2.12) and (2.14).

Since, in a numerical lattice calculation, the staple extpmecessarily remains finite, two
extrapolations must be performed from the generated dataely, the one to infinite staple length,
n — o, and the extrapolation of the staple direction towards itjte bone,f — oo, As discussed
below, the former extrapolation is fairly straightforward®n the other hand, the extrapolation
2 — oo constitutes a considerable challenge. Given thigtpurely spatial in the Lorentz frame
used for the lattice calculation, the accessible rangé o determined by the available hadron
spatial moment® (in units of the hadron mass), cf. (2.5). The numerical digohieved in lattice
calculations rapidly deteriorates with rising hadron matnen, and thus only a very limited set
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Figure 1: Generalized Boer-Mulders shift in a pion as a function opk@xtent at fixed quark separation
br and Collins-Soper evolution paramefefleft); and as a function dfr in then — o SIDIS limit, at three
different values of (right).
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Figure 2: Generalized Boer-Mulders shift in a pion in the SIDIS linstafunction of Collins-Soper evolu-
tion parametef at fixedbr (left); and as a function ofﬂf together with fits using the form+ d/Z (right).
Shown are both the full shift (filled symbols) as well as aiphdontribution (open symbols), as detailed in
the main text. Fit curves are for separate fits to the two célsegxtrapolated data point shown with a circle
symbol results from a simultaneous fit to both.

of 2 can be accessed. Data from a dedicated study of the Boerekuddift in a pion [10] are
discussed below to address this challenge; the lower mattge gfion compared to the nucleon
facilitates reaching higheﬁ and makes a controlled extrapolation possible.

Finally, a general challenge faced by Lattice QCD calcatfetiis reaching the physical pion
mass. The computational expense of treating quark maseesjgonding to the physical point has
hitherto precluded the generation of lattice TMD data at fflwant. Instead, data are produced at
artificially high pion masses. To also obtain preliminargigit into the pion mass dependence of
TMD observables, data at differing pion masses are juxegpbglow.

4. Numerical results

Focusing first on the issue eff—extrapolation, Figs. 1 and 2 display data for the genezdliz
Boer-Mulders shift (2.14) in a pion [10], obtained in a mixadion scheme employing domain wall
valence quarks on a MILC 2+1-flavor asqtad quark ensemble aMiattice spacing ad = 0.12fm
and a pion mass ah; = 518MeV. In the pion case, the isovector quark combinatiamsbes;
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the shown data are farquarks alone, with the corresponding disconnected daritoins omitted.
Fig. 1 (left) exhibits results obtained at a given quark safi@n by and a given staple direction
characterized bf , as a function of the staple extent. The T-odd behavior ofotheervable is
evident, withn — o corresponding to the SIDIS limit, wheregs— —oo yields the DY limit. The
data level off to approach clearly identifiable plateaux tas gtaple length grows. The limiting
SIDIS and DY values, represented by the open symbols, aractsdtl by imposing antisymmetry
in n, allowing one to appropriately average tihpe— +oo plateau values. Fig. 1 (right) summarizes
the SIDIS limit values as a function bf for three differentf. Remarkably, thér-dependence of
the Boer-Mulders shift flattens afsis increased, and the data for diﬁera;napproach each other
at largebr. It would be useful to understand this behavior in detaif). Rifocuses on a particular
value ofbr, displaying thef—dependence of both the full Boer-Mulders shift as well agrain
partial contribution which vanishes ét: 0, but dominates the quantity at Iaréecomparison of
the full Boer-Mulders shift with the partial contributiohus can give an indication of convergence
towards the Iargé limit. For further details, cf. [9, 10]. The partial contution already furnishes
roughly one half of the full shift at the higheétreached signaling that the calculation has covered
a S|gn|f|cant part of the evolution to IargIe The nght hand panel of Fig. 2 shows an extrapolatlon
to the IargeZ limit using the functional form:+d/Z (analogous fits using the foroy- d/Z2 are
seen to be inferior [10]). Given that the range{oaccessed numerically does not clearly overlap
with the regime in which perturbative evolution equatioesdme applicable, this form should be
viewed as no more than a physically motivated ad hoc ansdiz.fifs to the full and partial data
converge to compatible values, agreeing also with a cordtfihéo both data sets. This buttresses
confidence in the extrapolations and demonstrates thatelathlculations can achieve a signal for
the Boer-Mulders shift of sufficient quality such that it\aues taking thef — oo [imit.

Turning to the issue of the dependence of TMD ratios on theéatliscretization, which
provides an empirical test of whether renormalization @ffendeed cancel in such observables,
Figs. 3 and 4 show representative results for the genedatieers shift (2.12) in the nucleon.
Results for the isovectol — d quark combination are displayed; in this channel, couglinf
the operator insertion to disconnected quark loops in tledeon, which have not been evaluated,
cancel. The figures juxtapose results obtained on a RBC/UBKQ€1-flavor domain wall fermion
ensemble featuring a lattice spacingaet 0.084fm and a pion mass ai; = 297 MeV with results
obtained on a 2+1-flavor clover fermion ensemble provide& b@®rginos and collaborators in the
Jefferson Lab lattice group; the latter has a lattice sppoiha = 0.114fm and a pion mass of
m; = 317MeV. The two ensembles thus have very similar pion mabsesliffer substantially in
the lattice discretization. The domain wall fermion enskEnmot only features a considerably finer
spacing, but also respects chiral symmetry to the largéshegossible, whereas the clover fermion
ensemble strongly breaks the continuum symmetry. Fig.&pgously to Fig. 1 (right), shows the
SIDIS limit results as a function dfr at a givenf, where the shaded area beltiw| = 2a indicates
the region where the data may be significantly affected byefildttice cutoff effects. Fig. 4,
analogously to Fig. 2 (left), displays the dependence ofSHalS limit results on the Collins-
Soper evolution parameté’r, with |br| kept fixed. As in Fig. 2, both the full Sivers shift as well
as a certain partial contribution are exhibited, cf. the mm@nts in connection with that figure. The
results for the Sivers shift obtained on the two ensemblegigstion are compatible, despite the
considerable differences in terms of discretization sahefhis suggests that the renormalization
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Figure 3: Generalized Sivers shift in a nucleon as a functiobofn the n — o SIDIS limit, at a fixedf,
in a fine lattice domain wall fermion calculation (left) and@arse lattice clover fermion calculation (right),
cf. main text for details.
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Figure 4: Generalized Sivers shift in a nucleon as a functioﬁ af then — o SIDIS limit, at a fixedbr,
in a fine lattice domain wall fermion calculation (left) and@arse lattice clover fermion calculation (right).
Shown are both the full Sivers shift and a partial contribatianalogous to Fig. 2; cf. main text for detalils.

effects embodied in soft factors and wave function renozatbn constants indeed cancel in TMD
ratios also in the lattice formulation.

Finally, a preliminary indication of the pion mass deperwenf TMD ratios is given by the
juxtapositions in Figs. 5 and 6. These compare the domaihferahion data for the Sivers shift
in the nucleon ain; = 297 MeV already displayed in Figs. 3 (left) and 4 (left) withriesponding
nucleon Sivers shift data generated within the mixed acareme already employed in obtaining
the pion TMD results ain; = 518 MeV in Figs. 1 and 2. Figs. 5 and 6 are analogous to Figs. 3
and 4, respectively, displaying the SIDIS limit data eithsra function obr at a givenZ, or as
a function of the Collins-Soper evolution parame:f’ewith |br| kept fixed. Except for apparent
discretization artefacts at smaltir| in Fig. 5, the results at the two pion masses are compatible;
no significant variation of the Sivers shift is seen as the piass is changed. Recent preliminary
analysis of data obtained on another RBC/UKQCD 2+1-flavanaio wall fermion ensemble at
a pion mass ofn; = 170MeV indicates that this behavior persists even as onebaplpes the
physical point more closely [13], although it should be wloteat these newer data still display
sizeable statistical uncertainties.
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Figure 5: Generalized Sivers shift in a nucleon as a functioboin then — o« SIDIS limit, at a fixedf, in
a domain wall fermion calculation at; = 297 MeV (left) and a mixed action calculationrat; = 518 MeV
(right), cf. main text for details.
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Figure 6: Generalized Sivers shift in a nucleon as a functioﬁ of then — oo SIDIS limit, at a fixedor, in

a domain wall fermion calculation at; = 297 MeV (left) and a mixed action calculationrat; = 518 MeV
(right). Shown are both the full Sivers shift and a partiabtribution, analogous to Fig. 2; cf. main text for
further detalils.

5. Summary and outlook

TMDs can be formally defined in terms of hadronic matrix elateeof quark bilocal op-
erators containing staple-shaped gauge connectionshwitorporate final/initial state effects in
SIDIS/DY processes. Evaluating such matrix elements witlaittice QCD, one encounters several
challenges. For one, to cancel multiplicative soft factord renormalization constants, appropriate
ratios of Fourier-transformed TMDs (“generalized shiftsf. (2.12) and (2.14)) are constructed.
However, the breaking of space-time symmetries engendsréiae lattice discretization may im-
ply changes to the purely multiplicative nature of the safttbrs and renormalization constants
contained in the continuum definition; this possibility weddressed empirically by studying the
universality of TMD ratios under changes of the discretrascheme. Secondly, the gauge con-
nection staples are generically taken off the light coneeularize rapidity divergences, with the
Collins-Soper parametefr controlling the approach to the light cone. A dedicated wtoidpion
TMD ratios demonstrated that the attendant extrapolatitﬁ]ii; feasible within Lattice QCD cal-
culations. Thirdly, TMD calculations must ultimately appch the physical pion mass; the pion
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mass dependence of TMD ratios has been explored, and ndicaghivariations with pion mass
have hitherto been observed. These results buttress tloéngngrogram of calculating TMD ob-
servables within Lattice QCD presented here. Beyond the Tdid&ervables discussed above, the
developed methods will also be useful to study generalitsgiwvables containing a nonzero mo-
mentum transfer in (2.2), which can be related to quark akrlihgular momentum in the nucleon,
since they provide mixed position and momentum informaiiotie transverse plane.
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