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Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used
when evaluating, for example, form factors on the lattice. Twisting is usually performed for one
flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the
possibility of restoring unitarity through the reweighting method. We first study some properties
of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants
for different boundary conditions in order to include them in the gauge averages, avoiding in this
way the expensive generation of new configurations for each choice of the twisting angle, θ . As
expected the effect of reweighting is negligible in the case of large volumes but it is important
when the volumes are small and the twisting angles are large. In particular we find a measurable
effect for the plaquette and the pion correlation function in the case of θ = π/2 in a volume
16×83, and we observe a systematic upward shift in the pion dispersion relation.
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1. Introduction

Non-Periodic Boundary Conditions (NPBCs) for the fermions are typically employed on the
lattice in order to obtain a fine resolution of momenta in the spatial directions. Twisting [1] amounts
to imposing

ψ
(
x+Nµ µ̂

)
=

{
eiθµ ψ(x) , µ = 1,2,3

ψ(x) , µ = 0
,

where Nµ is the lattice extent in direction µ̂ and θ j ∈ [0,2π] is an angle. Alternatively one can
introduce a constant U(1) interaction with vanishing electric, magnetic field and electric potential
but constant vector potential [2] (see also [3] for the equivalence of the two procedures). The above
extra interaction is implemented by transforming the standard QCD links (U) in the following way

Uµ(x) =

{
eiθµ/NLUµ(x) , µ = 1,2,3

U0(x) , µ = 0
. (1.1)

The modification of the boundary conditions proved to be beneficial for:

• Form factors: one can scan values of the exchanged momenta in the scattering process with
a very fine resolution, in order to determine more accurately the form factors on the lattice.
An example is the semi-leptonic decay K`3 , used to extract the CKM element Vus.

• Matching between HQET and QCD: in the Schrödinger functional, one computes finite vol-
ume observables for different values of θ in the valence . In particular in such a setup
reweighting to a unitary formulation is expected to be efficient as the volumes considered are
rather small (the reweighting factors are extensive quantities).

• Dispersion relation: which is used here more as a consistency check, as done also in .

Usually one performs the twisting only in the valence, which causes breaking of unitarity. This
is simply understood since the procedure yields different propagators for fermions in the valence
and in the sea. One way to overcome this problem is to perform direct simulations with fermionic
NPBCs for each value of θ . That though, would clearly be too expensive from the computational
point of view. However, this kind of breaking of unitarity is expected to be a finite volume effect,
in χ-PT for example that is the case [3]. This suggests that where the effect is large, reweighting
may provide a reliable way to restore unitarity.

2. Reweighting

Let us suppose we want to connect simulation results for a choice of bare parameters a =

{β ,m1,m2, . . . ,mn f ,θµ , . . .} to a (slightly) different set b = {β ′,m′1,m′2, . . . ,m′n f
,θ ′µ , . . .} of param-

eters. This can be achieved by numerically computing on the a-ensemble the reweighting factor
Wab = Pb/Pa, which is the ratio of the two probability distributions and it is clearly an extensive
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quantity, Pa[U ] = e−SG[β ,U ]
∏

n f
i=1 det(D[U,θ ]+mi), where we have explicitly indicated the depen-

dence of the Dirac operator on the twisting angle. In this way the expectation values on the b-
ensemble are calculated as

〈O〉b =
〈ÕWab〉a
〈Wab〉a

,

with Õ the observable after Wick contractions, and 〈. . .〉a the expectation value over the set of bare
parameters a.
By choosing to change only the boundary conditions from one bare set to the other we arrive at the
following expression of the reweighting factor

Wθ = det
(
DW [U,θ ]D−1

W [U,0]
)
= det

(
DW [U ,0]D−1

W [U,0]
)
,

where DW is the massive Wilson operator. We therfore need a stochastic method to estimate (ratio
of) determinants. For this purpose we use the following integral representation of a normal matrix
determinant with spectrum λ (A) that holds if and only if the real part of each eigenvalue is larger
than zero [6]

1
detA

=
∫

D [η ]exp
(
−η

†Aη
)
< ∞ ⇐⇒ Reλ (A)> 0. (2.1)

If it is so then the stochastic estimae converges. We use as probability distribution p(η) of the η

vectors a gaussian one, then the determinant reads

1
detA

=

〈
e−η†Aη

p(η)

〉
p(η)

=
1

Nη

Nη

∑
k=0

e−η
†
k (A−1)ηk +O

(
1√
Nη

)
.

It should be noted that if we require, for the case of an hermitian matrix, the existence of all gaussian
moments then all the eigenvalues must be strictly larger than one〈

e−2η†Aη

p(η)2

〉
p(η)

=
∫

D [η ]exp
[
−η

†(2A−1)η
]
< ∞ ⇐⇒ λ (A)>

1
2
,

...〈
e−Nη†Aη

p(η)N

〉
p(η)

=
∫

D [η ]exp
[
−η

†[NA− (N−1)1]η
]
< ∞ ⇐⇒ λ (A)>

N−1
N
−→
N→∞

1.

2.1 Tree level study

The spectrum of the Dirac-Wilson operator at tree level is known and that allowed us to test
our numerical implementation. A tree level calculation (Fig. 1(a)) shows that at fixed θ and for
large NL the reweighting factor approaches the value 1, which is expected since it is a finite volume
effect. Conversely, the variance grows as NL increases (Fig. 1(b)). Hence a direct estimate for large
θ angles is not reliable and we need to employ a multi-step method in order to keep the error under
control. To this end, following [6], we factorize the relevant matrix in the following telescopic way

DW (θ)D−1
W (0) =

N−1

∏
l=0

A`, with A` ' 1+O(δθ`) , N =
θ

δθ`
.
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(a) Mean of the reweighting factor at tree level
for θ = 0.1 as a function of NL.
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(b) Variance of the reweighting factor at tree level
for θ = 0.1 as a function of NL.

Figure 1: Estimates of mean and variance of the reweighting factor employing the exact formulae for the
tree level case. Each point corresponds to a cubic lattice of the form L4.

with A` now near to the identity matrix as it corresponds to a small δθ` shift in the periodicity
angle. At this point the inverse determinant and its variance are given in terms of the N analogous
quantities, one for each multiple of δθ` in θ , as

1
detA

=
N−1

∏
`=0

〈
exp
(
−η(`),†A`η

(`)
)

p
(
η(`)

) 〉
p(η(`))

,

σ
2 =

N−1

∑
`=0

[
σ

2
η(`) ∏

k 6=`

det(Ak)
−2

]
.

3. Monte Carlo studies

We have calculated a number of reweighted observables in the SU(2) gauge theory with
fermions in the fundamental representation. This theory is known to exhibit confinement and chiral
symmetry breaking and it is therefore QCD-like. We have employed unimproved Wilson fermions
and the Wilson plaquette gauge action. In the table below we list the configurations used in this
work (mcr is estimated to be −0.75(1) at β = 2.2).

V β m Ncnf traj. sep.
16×83 2.2 -0.6 103 10
32×243 2.2 -0.65 394 20
32×243 2.2 -0.72 380 10

We have reweighted observables to constant non-vanishing spatial θ . To evaluate the reweighting
factor we have used the γ5 version of the Dirac-Wilson operator, since it is hermitian and with 2
flavours it automatically satisfies the applicability condition in eq. (2.1). We found that for Nη &
200 the reweighting factor on each configuration is larger than 10 times the average value on a few
configurations only. This guarantees that the average values are not dominated by spikes and hence
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that there are no large statistical fluctuations of the determinant. In the figures below we show the
mean of the reweighting factor (all points are averaged over the total number of configurations).
In Figs. 2(a) and 2(b) a good scaling for the error is clearly visible, according to N−1/2

η and up
to Nη ≈ 500, when increasing the number of steps. We conclude that at these parameters taking
500−600 gaussian vectors is enough to saturate the statistical noise at the level of the gauge noise.

θ = 0.3, 10 steps
θ = 0.3, 4 steps

Nη

〈W
θ
〉

1000900800700600500400300200100

1.15

1.1

1.05

1

0.95

0.9

(a) Mean of the reweighting factor for θ = 0.3 as a
function of Nη .

θ = π/2, 20 steps
θ = π/2, 15 steps

Nη

〈W
θ
〉

1000900800700600500400300200100

2.95

2.9

2.85

2.8

2.75

2.7

2.65

2.6

2.55

2.5

2.45

2.4

2.35

(b) Mean of the reweighting factor for θ = π/2 as a
function of Nη .

Figure 2: Monte Carlo history of the reweighting factor, averaged over the entire number of configurations.
The figures correspond to a volume V = 16×83.

3.1 Small volume

Reweighting may give a significant effect in small volumes. We have first looked at the pla-
quette because it does not explicitly depend on the BCs since, in general, in Wilson loops for each
link entering the loop there is another one in the opposite direction and the exponential factors
in eq. (1.1)) cancel among the two. We are neglecting autocorrelations, because measurements
are separated by 10 to 20 molecular dynamics units. A binning procedure, including bins from
length one up to 10, shows no significant autocorrelation effects. In Fig. 3(a) we show results after
reweighting only one flavor, by taking the square root of the reweighting factor. No effects are
visible in this case within errors. In Fig. 3(b) instead we have included the reweighting factor for
both flavors and one can see a permil effect, recognizable because the plaquette is determined very
accurately.

The second quantity that we have studied is the pion dispersion relation. In the pion correlator
we twisted only one flavor in the valence, hence the lowest energy state becomes a pion with
momentum ~p = ±~θ/L. We have reweighted the correlators in order to take into account the twist
in the sea and we have extracted the effective mass after symmetrizing the correlators in time.

In Fig. 4 we show results for the dispersion relation and we compare them to un-reweighted
data (i.e., with twisting only in the valence), to the continuum prediction (aE)2 = (amπ)

2+3θ 2/N2
L

and to the lattice free (boson) theory prediction cosh(aE)= 3+cosh(amπ)+3cos(θ/NL). Over the
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unreweighted plaquette
θ = π/2, 20 steps
θ = π/2, 15 steps

Nη

〈L
〉
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(a) Plaquette with only one flavor reweighted.

unreweighted plaquette
θ = π/2, 20 steps
θ = π/2, 15 steps

Nη

〈L
〉

1000900800700600500400300200100

0.603

0.6025

0.602

0.6015

0.601

(b) Plaquette with both flavors reweighted.

Figure 3: Monte Carlo history of the reweighted plaquette. The figures correspond to a volume V = 16×83.

entire range of θ values explored there is no clear effect within errors. However there is a systematic
effect upward. The discrepancy between the reweighted data and the lattice free prediction is
conceivably due to cutoff effects and non-perturbative dynamics.

lattice free curve
continuum curve
reweighted data

valence twist data

θ/NL

E
(θ
)

0.20.180.160.140.120.10.080.060.040.020

1.029

1.022

1.015

1.008

1.001

0.994

0.987

0.98

0.973

0.966

0.959

0.952

Figure 4: Pion dispersion relation for V = 16×83. Each point corresponds to the best determination of the
reweighting factor.

3.2 Large volumes

Obviously, in large volume we do not expect the situation to improve with respect to small
volumes, concerning both statistical accuracy and significance of the reweighting. We have looked
at the pion dispersion relation for two rather different values of mπ . We expect to find a larger effect
for the lighter pion but already at these volumes it appears as one can neglect the effects coming
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from the breaking of unitarity. In Fig. 5 we show the results for the two pion masses. No sizeable
effect is detectable in either case.

lattice free curve
continuum curve
reweighted data

valence twist data

θ/NL

E
(θ
)

0.070.060.050.040.030.020.010

0.75

0.745

0.74

0.735

0.73

(a) Case of m ' −0.65 which corresponds to a heavy
pion.

lattice free curve
continuum curve
reweighted data

valence twist data

θ/NL

E
(θ
)

0.070.060.050.040.030.020.010

0.465

0.46

0.455

0.45

0.445

0.44

(b) Case of m ' −0.72 which corresponds to a lighter
pion.

Figure 5: Pion dispersion relation for V = 32× 243. The reweighting factor at a given θ is obtained by a
telescopic product involving all the previous ones.

4. Conclusions

We have presented an application of the reweighting method to the case of the spatial peri-
odicity of fermionic fields. We have studied the approach at tree level and by mean of numerical
simulations. For the latter we have looked at the plaquette and at the pion dispersion relation in
small and large volumes. In both cases we have found the effects to be at the sub-percent level for
values of θ up to π/2.
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