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1. Introduction

The overlap Dirac operator [1] is the only known practical lattice Dirac operator with exact
chiral symmetry. It has various advantages over other discretisations, including: an exact chiral
symmetry, no additive mass renormalisation, a solid definition of the topology, automatic O(a)
improvement, and good topological properties. However, it also has two major disadvantages: it
requires a great deal more computational power than other actions, and the algorithms (such as
the HMC algorithm used to generate gauge field ensembles [2]) are considerably more complex.
Therefore, to use overlap fermions in simulations of lattice QCD, it is necessary to have both an
efficient algorithm and a good numerical implementation on the best available computer hardware.

A GPU cluster provides a powerful, low (financial) cost, and energy efficient supercomputer.
The GPU is a massively parallel co-processor, and because of the needs of the gaming industry, the
computational power of the GPU is continually increasing while the price remains stable. GPUs
also tend to be more energy-efficient than an equivalent CPU cluster. However, GPUs can be
adapted to any easily parallelized computation, which makes them ideally suited for lattice QCD.
NVIDIA has been particularly supportive of this effort, and have provided a high-level program-
ming language, CUDA, as an extension to C++. Existing lattice codes can thus be easily adapted
to make use of the GPU. The GPU architecture is ideally suited for overlap fermions, which are
still limited to relatively small volumes and coarse lattice spacings. The main limitation of a GPU
is memory bandwidth and its physical memory limitations, meaning that on larger volumes it is
necessary to set up a GPU cluster, increasing the communication costs.

These proceedings are an initial report on an attempt to write an overlap production code for
the GPU architecture. Our initial intention was to extend the QUDA library [3] (a specialised GPU
library for lattice QCD) for our purposes, but we found that the Wilson-fermion centred structure
(for example odd-even preconditioning, and the difficulty of merging the QUDA Wilson operator
into our other codes) made it harder to write an optimal code. We therefore ending up writing
our own code entirely, though parts of it are influenced by QUDA. Our code is built on the C++
Columbia Physics System library [4], which provides the various low-level CPU routines.

In section 2 we provide details of our implementation and choices made when developing the
algorithm. In section 3, we show the results of various numerical tests, comparing our code against
both the CPU and our initial QUDA implementation, and we conclude in section 4.

See [5] for another project describing a GPU implementation of overlap fermions.

2. Implementation Details

The overlap Dirac operator at mass parameter (U is defined as

1

Dlu] = 5 (1+p+ (1 pu)ysign(K)). 2.1)

K is the sign function kernel. We use the Wilson operator, K = y5(Dy — m,,), with my = 1.5 and

(Dwy)(x) =4 — %Z (1= %) Uu (@) w(x+af) + (1+ p)Uj(x—aft)y(x—aft)] . (22)
u
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Memory (MiB) 6144
Memory Bandwidth (Global Memory) (GB/s) 288

Single Precision Processing Power (GFlops) 4500
Double Precision Processing Power (GFlops) 1500

Table 1: The Memory, Memory Bandwitdth and Processing power of a NVIDIA GK110 (GeForce GTX
Titan) GPU.

Lattice Size  Action Sea Mass Valance Mass a ! (GeV) mgza

83 %32 Overlap 0.01 0.05 1.7 0.662(19)
83 %32 Overlap 0.01 0.01 1.7 0.366(72)
203 x 64 Asqtad MILC [7]) 0.014+0.05 0.01 ~1.6 0.276(2)
203 x 64 Asqtad (MILC [7]) 0.0140.05  0.0033 ~1.6 0.173(2)

Table 2: Details of the ensembles used for our tests. All ensembles used a Liischer-Weisz gauge action.

For our tests, we apply 3 steps of over-improved stout smearing [6] with parameters p = .1, € =
—0.25. We calculate the matrix sign function using a Chebyshev polynomial approximation and
deflation of the smallest eigenvector/eigenvalues pairs, ¢; and A;, of K

sign(K):Za,nT,n(K)JrZ(p,-q)j sign(A) — Y et (A1) | - (2.3)

T,, are the Chebyshev polynomials of the first kind, and ¢, are the appropriate coefficients to
give an approximation to the sign function. We used the Chebyshev polynomial to approximate the
matrix sign function because it provides a good approximation (its cost is comparable to the optimal
Zolotarev rational approximation), but, needing just a short three vector recurrence, it requires less
memory than the five dimensional approximation or a rational approximation. GPU applications
can be limited by the amount of memory. This is particularly true for overlap fermions, where for
optimal performance, we need to hold the vectors for the outer inversion, preconditioning inversion,
sign function approximation, and eigenvalue deflation simultaneously in the GPU or CPU memory.

We pre-compute a number of eigenvectors ¢ (the number calculated is limited by the system
memory; the number used is varied according to the desired precision of the matrix sign function
approximation) efficiently, and with negligible overall cost, using a polynomial preconditioned
implicitly restarted Lanczos routine. These eigenvectors are stored in CPU memory. We performed
the deflation on the CPU while the GPU computed the matrix sign function, using pthreads to allow
the two routines to run simultaneously. This proved to be more efficient than copying all the kernel
eigenvectors to the GPU to deflate on the GPU.

Our tests are performed on a Desktop Computer, with a quad core Intel Xeon (2.5 GHz), and
two NVIDIA GK110 (GeForce GTX Titan) GPUs. The details of our computer are shown in table
1. The performance of our code is primarily limited by memory bandwidth. We tested our code on
two sets of lattices, at two different (partially quenched/mixed action) masses. The parameters of
our configurations are shown in table 2.

CUDA is an extension to C++ that incorporates kernels, to be run on the GPU, as well as
routines to transfer memory from the GPU to the CPU. The GPU serves as a very highly threaded
co-processor for the CPU. The memory on the GPU is stored in various locations. Shared memory
and registers have the fastest access, then the cached texture and constant memory, followed by the
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global memory, which holds most of the data. There are two primary memory bottlenecks: trans-
fer from the GPU to the CPU (very slow) and transfer from global memory to the registers (very
important). The GPU/CPU bottleneck is not so significant for our code, since most calculations
are performed entirely on the GPU, and we can overlap CPU/GPU communication and compu-
tation. One important optimization of the code was to merge numerous CUDA kernels together.
This saves on memory bandwidth between global memory and the registers, and reduces the ker-
nel launch overhead. The most important gain was by merging together the Wilson matrix and
polynomial algebra for the matrix sign function into a single GPU kernel. Because of these unique
needs, it was difficult to integrate our code into the QUDA library. We therefore wrote our own
Wilson Matrix kernel, linear algebra routines, and GPU/CPU transfer routines, though based on
the implementation in QUDA. Unlike QUDA, we do not use odd/even preconditioning.

We tested two different routines to invert the overlap operator. The first routine, which we la-
bel as GMRESR(eigSUMR), used a relaxed nested inversion [8] with a low accuracy eigSUMR [8,
9, 10] algorithm used as a pre-conditioner for recursive GMRES [11]. This is known to perform
efficiently, because the bulk of the computation only requires a low-accuracy matrix sign function,
but it requires the costly pre-calculation of the overlap eigenvectors (albeit to a very low accu-
racy), and performs poorly on large lattice volumes. The second approach, GMRES(aMGOv),
followed [12], using the Wilson operator (with a tuned my ) as a pre-conditioner for the overlap op-
erator. The Wilson operator was inverted using an adaptive multigrid algorithm, aM G [13], which
is a combination of inexact deflation (we used 10 inexact deflation vectors) and the Schwartz Alter-
nating Procedure (SAP). Optimal performance for GMRES(a«MGOv) required tuning my, which
we accomplished by running the inverter for a fixed number of steps, using an iterative procedure
to find the my which produced the lowest residual. my needs to be tuned once per ensemble, since
the optimal my did not vary much from one configuration to another, and a slightly sub-optimal
my does not significantly affect the performance. This tuning of myy is considerably faster than the
computation of the overlap eigenvectors. We have not yet fully optimised our MG algorithm.

These tests used a Lanczos procedure to compute the overlap eigenvectors [10], however this
routine performs poorly since it is not possible to significantly relax the accuracy of the matrix sign
function. We also tried a Jacobi-Davidson (JD) algorithm, but found that it would not work effi-
ciently on larger lattices. JD involves inverting the overlap operator minus a guess of an eigenvalue
(projected into the subspace orthogonal to the eigenvector), and the eigenvalues were too densely
packed to allow any convergence. Our current approach is to use an accelerated CG minimisation
of the Ritz functional for a rational approximation of the overlap operator. This transfers compu-
tation from an eigenvalue routine to an inversion, where we use the efficient GMRES(aMGOv)
algorithm. Although this has proven more efficient than the other methods, we are still not com-
pletely satisfied with this algorithm, and are still searching for alternatives. Therefore we will not
report on the performance of our eigenvalue routines here.

3. Numerical Results

Table 3 gives a comparison between QUDA and our code (OC) for various routines for 1 and
2 processors. We obtain a similar performance for the Wilson operator. We get an improved sign
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Lattice 8332 1GPU  8°322GPU | 8321 GPU 83322 GPU
Wilson Matrix (10~3s) | 0.236 0.195 0.248 0.172

Sign Function (s) 0.2282 0.1716 0.1448 0.1396
Lattice 20°64 1 GPU 20364 2 GPU | 20364 1 GPU  20°64 2 GPU
Wilson Matrix (10~3s) | 7.092 3.842 6.759 3.625

Sign Function (s) 16.58 9.17 15.31 8.71

Table 3: A comparison between the QUDA and our own code’s performance for the Wilson Matrix and
Matrix Sign function. The middle panel refers to the results on QUDA, and the right panel with our own

code.

Routine (1 GPU) CPU GPU  peak CPU GPU  peak

Wilson Matrix (10~35) 5.59 0.248  43.5% | 1804 6.759 49.9%
75 (10735) 0.555 0.105 194% | 1892 0.885 71.8%
Chebyshev sign function(s) | 8.63 0.122  42.6% | 3163 1495 41.7%
z=ax+by (10735) 1.58 0202  15.5% | 58.2 1.50 65.0%
Routine (2 GPU) CPU GPU  peak CPU GPU  peak

Wilson Matrix (1035) 3.43 0.172  32.4% | 107.8 3.625 46.5%
5 (10735) 0.333  0.047 164% | 1.21 0.454  70.0%
Chebyshev sign function (s) | 4.67 0.090 30.2% | 1925 7.869 40.2%
7= ax+by (1073s) 0.441 0.288 6.2% 37.3 0.897 54.4%

Table 4: A comparison between GPU and CPU performance. The middle panel refers to results on the
83 x 32 lattice, and the right panel to results on the 20° x 64 lattice.

function performance compared to an implementation which used the QUDA Wilson operator since
we could partly merge the Wilson operator and the rest of the sign function code.

Table 4 gives a comparison between CPU and GPU performance for various key routines,
and two of these sets of results are presented graphically in figure 1. The peak performance is a
comparison with the best possible time given the processing power and optimal memory bandwidth
(from GPU global memory to the GPU registers). It excludes various effects which will also take
up computational time, such as: the start-up time for a GPU kernel, MPI communication between
processors and the GPU and CPU, and any cost caused by portions of the GPU running idle (we
cannot use all the available threads for some parts of some routines because of a lack of registers
on the GPU).

Our comparisons of the inversion algorithms are shown in table 5 and figure 2. We use a rela-
tive inversion accuracy of 10~ for Wilson fermions (using single precision) and 10~ for overlap
fermions (using mixed precision). We see more than a factor of 36 gain for MG over a straight-
forward CG inversion for the Wilson operator on our largest volume. The GMRES(acMGOv) algo-
rithm is superior to GMRES(eigSUMR) by about a factor of 5 on our largest volume and smallest
quark mass. It has much better scaling with lattice volume than the eigSUMR routine.

4. Conclusions

We have implemented a code for overlap fermions on GPUs using the CUDA programming
language. Our code runs a factor of 200 faster than the CPU code for the matrix sign function
on our larger test lattices. Our code scales well with the number of processors in our production
environment. Our Wilson operator and linear algebra routines are competitive with the QUDA
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Figure 1: A comparison between CPU and GPU performance for the Wilson operator (left) and the Cheby-
shev approximation to the matrix sign function (excluding deflation) (right) on the 20° x 64 lattice.

Volume # u CG Wilson aMG | GMRES(eigSUMR) GMRES(aMGOv)
83x32 1 0.05 0.123 0.108 | 9.34 19.51

8x32 1 001 0.299 0.232 | 10.67 4527

83x32 2 0.05 0.114 0.091 | 7.09 12.93

83x32 2 0.0l 0.220 0.161 | 9.29 29.14

20364 2 0.01 75.3 1.97 | 4030 1086

203x64 2 0.0033 | 65.76 1.83 | 12396 2571

Table 5: A comparison between the performance of the MG routine against a straight CG inversion of
the Wilson operator and between the overlap inversions using deflation and the Wilson operator as a pre-
conditioner. The timings are given in seconds. # refers to the number of GPUs used in the computation.
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Figure 2: The times required for the Wilson CG and adaptive multigrid inverters (left) and the overlap invert-
ers (right) running on 2GPUs on the 20° x 64 lattice. The labels on the right plot indicate the preconditioner
inside the GMRESR algorithm.

library. We have implemented inversion, eigenvalue, and conserved current routines using the
latest algorithms. We have confirmed that the GMRES(aMGOv) algorithm performs well on large
volumes on GPUs. We are able to perform an overlap inversion on 2 CPU/GPUs on a 20° x 24
lattice at my ~ 280MeV in ~ 40 minutes. Eigenvalue routines for overlap fermions remain a
bottleneck, but we have been working on finding a better algorithm. This code will eventually be
used for calculations of Bg and &k to check the ongoing SWME Staggered simulations [14].
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