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The hybrid Monte Carlo (HMC) algorithm has been widely usedlynamical lattice quantum
chromo-dynamics simulations. An advantage of using the HNgorithm is that it is a global
algorithm that can update all of the link variables simuttamsly, thereby greatly reducing the
computational cost related to the fermionic part. We expglos advantage for estimating the pa-
rameters of the realized stochastic volatility (RSV) medéiich is used for modeling time series
data. The RSV model includes a number of volatility varialileat need to be updated, and thus
we update these variables using the HMC algorithm. We fotatithe HMC algorithm effec-
tively decorrelates Monte Carlo samples of volatility zdniies. We also show that the algorithm
can be accelerated by GPU computing with OpenACC.
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1. Introduction

The hybrid Monte Carlo (HMC) algorithm[1] was developed for dynamictilda quantum
chromo-dynamics (QCD) simulations and it is a global method that can updataliakles simul-
taneously in lattice QCD simulations. This property is advantageous for lattié2 )@ulations
because it greatly reduces the computational cost related to the fermiohidrmpaddition to its
use for lattice QCD simulations, the HMC algorithm is viewed as a Markov Chaint®&Garlo
(MCMC) method. Therefore, the HMC algorithm has potential in many othé&dsfieshere the
MCMC technique is required.

In empirical finance, it is crucial to estimate the volatility (or variance) of aggee returns
to manage risk. However, this volatility is not an observable in financial nmrieend thus an
estimation technique is required such as volatility modeling. A widely used volatilityeiisdhe
stochastic volatility (SV) modéJ2], which allows the volatility to be treated as a stochastic process.
The parameters of the SV model need to be determined so the model matchbsehed data.
In general, the parameters are estimated for the SV model by Bayesiagnicdensing MCMC
methods. The most time-consuming part of the MCMC method for the SV modelasiip
updating, which requires the updating of a number of volatility variables. HKC algorithm
has been employed for volatility updating and it was shown that the HMC algogtn rapidly
decorrelate Monte Carlo samples of volatility [3, 4, 5].

Recently, an extended version of the SV model was proposed that utilzesalized volatil-
ity (RV)[9, 10] as additional information, which is called the realized stotbaslatility (RSV)
model[11]. In this study, we propose a Bayesian inference method fdR#\&model using the
HMC algorithm. The HMC algorithm can be readily parallelized, so we perfdrBayesian in-
ference by GPU computing and we compared the performance with computaiiogn a CPU
machine.

2. SV Model
The standard SV model[2] is written as

v = explh/2)&, &~ N(0,1), (2.1)
ht = p+ @b — )+, ne~N(0,02), (2.2)

wherey; fort = 1,...,T is a daily return at tim¢ andh is a latent volatility defined by la?.
This model includes three paramete(rqa,u,a,%), which we need to estimate from daily returns
data. The standard estimation technique is Bayesian inference using th€w@thod. The most
time-consuming part of the MCMC approach for SV models is volatility updati2lg[Beveral
MCMC approaches have been developed to improve the efficiency dflitplapdating, such as
the multi-move sampler[13, 14]. The HMC algorithm has also been employetthifopurpose
and it was shown that the HMC can accelerate the decorrelation betweste Klarlo samples of
volatility[3, 4, 5].

LAnother popular volatility model is the GARCH model[6, 7], which models drinistic volatility process. The
HMC algorithm also has been applied to GARCH parameter estimation[8].
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3. RSV Model

The RSV model introduced by Takahashal.[11] is written as

yi = exp(hy/2)&, &~ N(0,1), (3.1
INRV = E+h+uw, u~N(O0a2), (3.2)
heir = u+@he—p)+n,  me~N(0,07), (3.3)

whereRV; fort = 1,....T is a daily realized volatility at tim¢. The model parameters that we
need to estimate a@= ¢, U, &, 0,%, oZ. In this study, we propose to estimate the model parameter
6 by Bayesian inference and we also use the HMC algorithm for volatility upglatirMCMC
simulations.

4. HMC algorithm

The HMC algorithm combines molecular dynamics (MD) simulation and the Metroaciis
cept/reject test. The basic HMC algorithm for the RSV model is as followst, Biesnext candidate
volatility variables are generated by solving the Hamilton's equations of motiowgtitidus time
T,

dh; B JoH
@ op (4.3)
dp; . oH
9~ an (42)

wherep; fori =1,...,T is a conjugate momentum kp. The HamiltoniarH is defined byH (p,h) =
%ziT p2 —In f(h,8), wheref(h, 8) is the conditional posterior density of the RSV model[11]. In
general, Egs.(4.1)—(4.2) cannot be solved analytically, so we integete namerically by MD
simulation. The standard integrator for the MD simulation in the HMC algorithm is ¢cersd
order leapfrog integrator[1] given by

hi(T+07/2) = hi(T) + % pi(1), (4.3)
pi(T+0T) = pi(1) - T, (4.4)
hi(T+01) = hi(1+067/2) + F pi(T + 37), (4.5)

wherei =1,..., T anddt denotes the step size. Higher order or other integrators[15]-[18isan
be used in the HMC algorithm if necessary. Actually, for the RSV model, itfwasd that the
MN integrator[17, 18] is superior to the leapfrog integrator[19]. Eg&.3)—(4.5) are repeatdd
times and we then obtain the total integration lenigth k x 1. After the MD simulations, we
obtain new volatility and conjugate momentum variables, which are denotgd=ak(7 +1) and

pi = p(t+1). The new volatility variable are accepted at the Metropolis step with a probability
of ~ min{1,exp(—AH)}, whereAH = H(p’,h') —H(p,h).
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Table1: GTX 760 Specifications[20]
GPU Engine Specifications

CUDA Cores 1152
Base Clock (MHz) 980
Boost Clock (MHz) 1033
Memory Specifications
Memory Speed 6.0 Gpbs
Memory Config 2048 MB
Memory Interface GDDR5
Memory Interface Width 265-bit
Memory Bandwidth (GB/s 192.2

5. Environment for GPU coding

In this study, we used the NVIDIA GeForce GTX760 for GPU computing.l&atshows the
specifications of the GTX760[20]. The original HMC code for the RSV giah a single CPU
was developed by [21] and it was modified for GPU code using Open22)@j PGI Fortran[23].
We also executed the code on a CPU (Intel i7-4770, 3.4 GHz) to compapertioemance using a
GPU and CPU.

6. HMC algorithm in OpenACC

OpenACC allows directive-based programming for use on a GPU, whiclyiezatly reduce
the coding effort required. The following is a schematic representatidtheo©penACC coding
process.

I$acc data copy(h,p)
do loop, repeat k timesup to | trajectory length
I$acc kernels

hi(t+01/2) = hi(1) + & pi(1) i=1,...,T (6.1)
pi(T+0T) = pi(1) - TR i=1,....T (6.2)
hi(T+61) = hi(T+671/2) + &L pi(1+67) i=1,....T (6.3)

I$acc end kernels
end do loop

I$acc end data

Egs. (6.1)—(6.3) between “I$acc kernels” and “!$acc end kerragtstranslated automatically
into GPU code and executed on the GPU. The data directive “!$acc dayéhep)” specifies the
place where the variablek &ndp) are transferred to the GPU. This avoids unnecessary data trans-
fers between the CPU and GPU when the kernels, Egs. (6.1)—(6.3aléed. It has been shown
that the appropriate insertion of a data directive can achieve speedupr sin@leaDA Fortran[19].
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Figure 1: (Left) Average time required to compute 200 leapfrog stegpght) Gain obtained using GPU
computation compared with a CPU.

Table 2: Fitting parameters

A C
GPU (OpenACC) 9.41x103% |336x107
CPU (Intel i7-4770, 3.4 GHz) —1.85x10* | 1.30x 10°°

To compare the performance using the GPU and CPU, we measured the tiniredeq
compute the leapfrog step. Figure 1 (left) shows the average time requitethfmute 200 leapfrog
steps as a function of the number of volatility variables. The computational tirsdimear for
both the GPU and CPU. We fitted the results with a linear functfdn) = A+ C x n, wheren is
the number of volatility variables antl,C are the parameters. The fitting results are provided in
Table 2. We defined the speedup of the GPU over the CPGby1 = fcpy (n)/ fepu (n). Figure 1
(right) shows the Gain as a function iof The Gain increased withand it was predicted to reach
CCPU /CGPU ~ 37 in the limit ofn — co.

7. Empirical application

We applied Bayesian inference to an RSV model of stock price data foalNiswtor Co.
based on trades on the Tokyo Stock Exchange between July 3, 20@® ddecember 20, 2009.
Figure 2 (left) shows the return time series data for Nissan Motor Co. Usgigfrequency data,
we calculated the RV at a sampling frequency of 1 min. Figure 2 (right) stimwRV as a function
of time (days). The returns and RV data were used as input data forsBaymference in the
RSV model. The HMC algorithm was performed with the MN integrator[18] witheg size of
o1 = 1/9 and trajectory length= 1, where the acceptance rate at the Metropolis step was found
to be about 0.82. We discarded the first 5000 Monte Carlo samples ancewedhected 50000
samples for analysis. The results using the parameters obtained by the M@MJ{tions are
listed in Table 3.

Figure 3 shows the autocorrelation function of the volatility Monte Carlo samples result
for higo is shown as a representative example. The integrated autocorrelation tsrealvalated
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Figure 2: (Left) Return time series of stock price data for Nissan M. trades on the Tokyo Stock
Exchange from July 3, 2006 to December 20, 2009. (Right) R¥ed at a frequency of 1 min from July
3, 2006 to Decem!
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Figure3: Autocorrelation function for the volatility variable. Thesult is shown foh;go as a representative
example.

Table 3: Results of MCMC simulations. The values in parenthesesatdistatistical errors.
H ¢ o7 3 o
-7.61(5) 0.9849(1) 0.0237(2) -0.3703(3) 0.0465(1)

as~ 13. This autocorrelation time is very short compared with tha©f00) for Metropolis
updating[3, 4].
8. Conclusion

In this study, we performed Bayesian inference of the RSV model using M@ algorithm
and we found that the HMC algorithm can rapidly decorrelate Monte Canpks of volatility
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variables. The HMC algorithm was implemented on a GPU (GeForce GTX 780 QpenACC
coding. A comparison was performed with a CPU (Intel i7-4770, 3.4 Ghljch showed that the
GPU was faster than the CPU and the Gain of the GPU compared with the CPAb@#s37 with
a large number of volatility variables.
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