
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

An application of the hybrid Monte Carlo algorithm
for realized stochastic volatility model

Tetsuya Takaishi∗

Hiroshima University of Economics, Hiroshima. Japan
E-mail: tt-taka@hue.ac.jp

Yubin Liu
Nankai University, Tianjin, China
E-mail: liuyb@nankai.edu.cn

Ting Ting Chen
Hiroshima University, Hiroshima, Japan

The hybrid Monte Carlo (HMC) algorithm has been widely used in dynamical lattice quantum

chromo-dynamics simulations. An advantage of using the HMCalgorithm is that it is a global

algorithm that can update all of the link variables simultaneously, thereby greatly reducing the

computational cost related to the fermionic part. We exploit this advantage for estimating the pa-

rameters of the realized stochastic volatility (RSV) model, which is used for modeling time series

data. The RSV model includes a number of volatility variables that need to be updated, and thus

we update these variables using the HMC algorithm. We found that the HMC algorithm effec-

tively decorrelates Monte Carlo samples of volatility variables. We also show that the algorithm

can be accelerated by GPU computing with OpenACC.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

Application of the HMC algorithm for RSV model Tetsuya Takaishi

1. Introduction

The hybrid Monte Carlo (HMC) algorithm[1] was developed for dynamical lattice quantum
chromo-dynamics (QCD) simulations and it is a global method that can update linkvariables simul-
taneously in lattice QCD simulations. This property is advantageous for lattice QCD simulations
because it greatly reduces the computational cost related to the fermionic part. In addition to its
use for lattice QCD simulations, the HMC algorithm is viewed as a Markov Chain Monte Carlo
(MCMC) method. Therefore, the HMC algorithm has potential in many other fields where the
MCMC technique is required.

In empirical finance, it is crucial to estimate the volatility (or variance) of asset price returns
to manage risk. However, this volatility is not an observable in financial markets, and thus an
estimation technique is required such as volatility modeling. A widely used volatility model is the
stochastic volatility (SV) model1[2], which allows the volatility to be treated as a stochastic process.
The parameters of the SV model need to be determined so the model matches the observed data.
In general, the parameters are estimated for the SV model by Bayesian inference using MCMC
methods. The most time-consuming part of the MCMC method for the SV model is volatility
updating, which requires the updating of a number of volatility variables. TheHMC algorithm
has been employed for volatility updating and it was shown that the HMC algorithm can rapidly
decorrelate Monte Carlo samples of volatility [3, 4, 5].

Recently, an extended version of the SV model was proposed that utilizes the realized volatil-
ity (RV)[9, 10] as additional information, which is called the realized stochastic volatility (RSV)
model[11]. In this study, we propose a Bayesian inference method for theRSV model using the
HMC algorithm. The HMC algorithm can be readily parallelized, so we performed Bayesian in-
ference by GPU computing and we compared the performance with computationusing a CPU
machine.

2. SV Model

The standard SV model[2] is written as

yt = exp(ht/2)εt , εt ∼ N(0,1), (2.1)

ht+1 = µ +φ(ht −µ)+ηt , ηt ∼ N(0,σ2
η), (2.2)

whereyt for t = 1, ...,T is a daily return at timet and ht is a latent volatility defined by lnσ2
t .

This model includes three parameters,(φ ,µ,σ2
η), which we need to estimate from daily returns

data. The standard estimation technique is Bayesian inference using the MCMC method. The most
time-consuming part of the MCMC approach for SV models is volatility updating[12]. Several
MCMC approaches have been developed to improve the efficiency of volatility updating, such as
the multi-move sampler[13, 14]. The HMC algorithm has also been employed forthis purpose
and it was shown that the HMC can accelerate the decorrelation between Monte Carlo samples of
volatility[3, 4, 5].

1Another popular volatility model is the GARCH model[6, 7], which models a deterministic volatility process. The
HMC algorithm also has been applied to GARCH parameter estimation[8].

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

Application of the HMC algorithm for RSV model Tetsuya Takaishi

3. RSV Model

The RSV model introduced by Takahashiet al.[11] is written as

yt = exp(ht/2)εt , εt ∼ N(0,1), (3.1)

lnRVt = ξ +ht +ut , ut ∼ N(0,σ2
u ), (3.2)

ht+1 = µ +φ(ht −µ)+ηt , ηt ∼ N(0,σ2
η), (3.3)

whereRVt for t = 1, ...,T is a daily realized volatility at timet. The model parameters that we
need to estimate areθ = φ ,µ,ξ ,σ2

η ,σ2
u . In this study, we propose to estimate the model parameter

θ by Bayesian inference and we also use the HMC algorithm for volatility updating in MCMC
simulations.

4. HMC algorithm

The HMC algorithm combines molecular dynamics (MD) simulation and the Metropolisac-
cept/reject test. The basic HMC algorithm for the RSV model is as follows. First, the next candidate
volatility variables are generated by solving the Hamilton’s equations of motion in fictitious time
τ,

dhi

dτ
=

∂H
∂ pi

, (4.1)

d pi

dτ
= −

∂H
∂hi

, (4.2)

wherepi for i = 1, ...,T is a conjugate momentum tohi. The HamiltonianH is defined byH(p,h) =
1
2 ∑T

i p2
i − ln f (h,θ), where f (h,θ) is the conditional posterior density of the RSV model[11]. In

general, Eqs.(4.1)–(4.2) cannot be solved analytically, so we integrate them numerically by MD
simulation. The standard integrator for the MD simulation in the HMC algorithm is the second
order leapfrog integrator[1] given by

hi(τ +δτ/2) = hi(τ)+ δτ
2 pi(τ), (4.3)

pi(τ +δτ) = pi(τ)−δτ ∂H
∂hi

, (4.4)

hi(τ +δτ) = hi(τ +δτ/2)+ δτ
2 pi(τ +δτ), (4.5)

wherei = 1, ...,T andδτ denotes the step size. Higher order or other integrators[15]-[18] canalso
be used in the HMC algorithm if necessary. Actually, for the RSV model, it wasfound that the
MN integrator[17, 18] is superior to the leapfrog integrator[19]. Eqs. (4.3)–(4.5) are repeatedk
times and we then obtain the total integration lengthl = k× δτ. After the MD simulations, we
obtain new volatility and conjugate momentum variables, which are denoted ash′i = h(τ + l) and
p′i = p(τ + l). The new volatility variablesh′i are accepted at the Metropolis step with a probability
of ∼ min{1,exp(−∆H)}, where∆H = H(p′,h′)−H(p,h).

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

Application of the HMC algorithm for RSV model Tetsuya Takaishi

Table 1: GTX 760 Specifications[20]

GPU Engine Specifications

CUDA Cores 1152
Base Clock (MHz) 980
Boost Clock (MHz) 1033

Memory Specifications

Memory Speed 6.0 Gpbs
Memory Config 2048 MB
Memory Interface GDDR5
Memory Interface Width 265-bit
Memory Bandwidth (GB/s) 192.2

5. Environment for GPU coding

In this study, we used the NVIDIA GeForce GTX760 for GPU computing. Table 1 shows the
specifications of the GTX760[20]. The original HMC code for the RSV model on a single CPU
was developed by [21] and it was modified for GPU code using OpenACC[22] in PGI Fortran[23].
We also executed the code on a CPU (Intel i7-4770, 3.4 GHz) to compare theperformance using a
GPU and CPU.

6. HMC algorithm in OpenACC

OpenACC allows directive-based programming for use on a GPU, which can greatly reduce
the coding effort required. The following is a schematic representation ofthe OpenACC coding
process.

!$acc data copy(h,p)
do loop, repeat k times up to l trajectory length

!$acc kernels

hi(τ +δτ/2) = hi(τ)+ δτ
2 pi(τ) i = 1, . . . ,T (6.1)

pi(τ +δτ) = pi(τ)−δτ ∂H
∂hi

i = 1, . . . ,T (6.2)

hi(τ +δτ) = hi(τ +δτ/2)+ δτ
2 pi(τ +δτ) i = 1, . . . ,T (6.3)

!$acc end kernels
end do loop

!$acc end data

Eqs. (6.1)–(6.3) between “!$acc kernels” and “!$acc end kernels”are translated automatically
into GPU code and executed on the GPU. The data directive “!$acc data copy(h,p)” specifies the
place where the variables (h andp) are transferred to the GPU. This avoids unnecessary data trans-
fers between the CPU and GPU when the kernels, Eqs. (6.1)–(6.3), arecalled. It has been shown
that the appropriate insertion of a data directive can achieve speedup similar to CUDA Fortran[19].

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

Application of the HMC algorithm for RSV model Tetsuya Takaishi

0 10000 20000 30000 40000
# of Volatility Variables

0

0.1

0.2

0.3

0.4

0.5

T
im

e

CPU
GPU

0 20000 40000 60000 80000
# of Volatility Variables

5

10

15

20

25

G
ai

n

Figure 1: (Left) Average time required to compute 200 leapfrog steps.(Right) Gain obtained using GPU
computation compared with a CPU.

Table 2: Fitting parameters

A C

GPU (OpenACC) 9.41×10−3 3.36×10−7

CPU (Intel i7-4770, 3.4 GHz) −1.85×10−4 1.30×10−5

To compare the performance using the GPU and CPU, we measured the time required to
compute the leapfrog step. Figure 1 (left) shows the average time required tocompute 200 leapfrog
steps as a function of the number of volatility variables. The computational time was linear for
both the GPU and CPU. We fitted the results with a linear function:f (n) = A +C×n, wheren is
the number of volatility variables andA,C are the parameters. The fitting results are provided in
Table 2. We defined the speedup of the GPU over the CPU by:Gain = fCPU(n)/ fGPU(n). Figure 1
(right) shows the Gain as a function ofn. The Gain increased withn and it was predicted to reach
CCPU/CGPU ≈ 37 in the limit ofn → ∞.

7. Empirical application

We applied Bayesian inference to an RSV model of stock price data for Nissan Motor Co.
based on trades on the Tokyo Stock Exchange between July 3, 2006 and20 December 20, 2009.
Figure 2 (left) shows the return time series data for Nissan Motor Co. Using high-frequency data,
we calculated the RV at a sampling frequency of 1 min. Figure 2 (right) showsthe RV as a function
of time (days). The returns and RV data were used as input data for Bayesian inference in the
RSV model. The HMC algorithm was performed with the MN integrator[18] with a step size of
δτ = 1/9 and trajectory lengthl = 1, where the acceptance rate at the Metropolis step was found
to be about 0.82. We discarded the first 5000 Monte Carlo samples and we then collected 50000
samples for analysis. The results using the parameters obtained by the MCMCsimulations are
listed in Table 3.

Figure 3 shows the autocorrelation function of the volatility Monte Carlo samples. The result
for h100 is shown as a representative example. The integrated autocorrelation time was calculated

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

Application of the HMC algorithm for RSV model Tetsuya Takaishi

0 200 400 600 800

-0.1

0

0.1

0 200 400 600 800
t

0

0.001

0.002

0.003

0.004

0.005

0.006

R
V

t

Figure 2: (Left) Return time series of stock price data for Nissan Motor Co. trades on the Tokyo Stock
Exchange from July 3, 2006 to December 20, 2009. (Right) RV sampled at a frequency of 1 min from July
3, 2006 to December 20, 2009.

0 50 100 150
t

0.01

0.1

1

A
C

F
(t

)

Figure 3: Autocorrelation function for the volatility variable. Theresult is shown forh100 as a representative
example.

Table 3: Results of MCMC simulations. The values in parentheses indicate statistical errors.

µ φ σ2
η ξ σ2

u

-7.61(5) 0.9849(1) 0.0237(2) -0.3703(3) 0.0465(1)

as≈ 13. This autocorrelation time is very short compared with that ofO(100) for Metropolis
updating[3, 4].

8. Conclusion

In this study, we performed Bayesian inference of the RSV model using theHMC algorithm
and we found that the HMC algorithm can rapidly decorrelate Monte Carlo samples of volatility

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
9

Application of the HMC algorithm for RSV model Tetsuya Takaishi

variables. The HMC algorithm was implemented on a GPU (GeForce GTX 760) with OpenACC
coding. A comparison was performed with a CPU (Intel i7-4770, 3.4 GHz),which showed that the
GPU was faster than the CPU and the Gain of the GPU compared with the CPU wasabout 37 with
a large number of volatility variables.

Acknowledgments

The numerical calculations in this study were performed at the Yukawa Institute Computer
Facility and the facilities of the Institute of Statistical Mathematics. This study was supported by
JSPS KAKENHI Grant Number 25330047.

References

[1] S.Duaneet al. Phys. Lett. B195 (1987) 216-222.

[2] S.J. Taylor,Modelling Financial Time Series (1986) John Wiley & Sons, New Jersey.

[3] T. Takaishi, Lecture Notes in Computer Science5226 (2008) 929–936.

[4] T. Takaishi, Journal of Circuits, Systems, and Computers 18 (2009) 1381–1396.

[5] T. Takaishi, J. Phys.: Conf. Ser.423 (2013) 012021.

[6] R.F. Engle, Econometrica50 (1982) 987–1007.

[7] T. Bollerslev, Journal of Econometrics31 (1986) 307–327.

[8] T. Takaishi, Proceedings of the 9th Joint Conference on Information Sciences (2006) 214.
DOI: 10.2991/jcis.2006.159

[9] T.G. Andersen and T. Bollerslev, International Economic Review39 (1998) 885–905.

[10] T.G. Andersen, T. Bollerslev, F.X. Diebold and P. Labys, Journal of the American Statistical
Association96 (2001) 42–55.

[11] M. Takahashi, Y. Omori and T. Watanabe, Compt. Stat. & Data Anal.53 (2009) 2404–2425.

[12] S. Kim, N. Shephard and S. Chib, Review of Economic Studies65 (1998) 361–393.

[13] N. Shephard and M.K. Pitt, Biometrika84 (1997) 653–667.

[14] T. Watanabe and Y. Omori, Biometrika91 (2004) 246–248.

[15] T. Takaishi, Comput. Phys. Commun.133 (2000) 6–17.

[16] T. Takaishi, Phys. Lett. B540 (2002) 159–165.

[17] I.P. Omelyan, I.M. Mryglod and R. Folk, Comput. Phys. Commun.151 (2003) 272–314.

[18] T. Takaishi and P. de Forcrand, Phys. Rev. E73 (2006) 036706.

[19] T. Takaishi, J. Phys.: Conf. Ser.574 (2015) 012143.

[20] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-760

[21] T. Takaishi, J. Phys.: Conf. Ser.490 (2014) 012092.

[22] http://www.openacc.org/

[23] https://www.pgroup.com/resources/cudafortran.htm

7


