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1. Complex Langevin method

In quantum Monte Carlo simulations, ensemble average is taken on the basis of the weight of
a partition function. The weight is not always positive and can be negative or complex in the real
world. This leads to the well-known sign problem. In lattice QCD, the sign problem is caused by
chemical potentials, electric fields, theta term, and real time. The sign problem is not a specific
problem of lattice QCD. It appears in many other quantum systems, such as matrix models, non-
relativistic systems, and spin systems. The sign problem is a crucial and broad problem in modern
physics.

One hopeful way to solve the sign problem is the complex Langevin method. In the complex
Langevin method, field variables are complexified as Φ∈R→ Φ̃∈C. The complex field is evolved
by the complex Langevin equation

∂

∂θ
Φ̃ =− δ

δ Φ̃
S[Φ̃]+η , (1.1)

where θ is a fictitious time and η is a noise field. The expectation value of an operator Ô is given
by the long-time average of noise average

〈Ô[Φ̃]〉= lim
θ→∞

〈Ô[Φ̃(θ)]〉η . (1.2)

For the detail, see a recent review [1]. The complex Langevin method is mainly discussed to solve
the sign problem in relativistic theory [2].

In this study, we apply the complex Langevin method to two systems in condensed matter
physics: a Bose system and a Fermi system. We have two motivations. The first one is the ab-initio
analysis of condensed matter systems. There are many unsolved systems with the sign problem.
We can analyze such systems by using the complex Langevin method. The second one is a test of
the complex Langevin method. Since the validity of the method has not yet understood completely,
we should learn more about it. Compared to relativistic systems, condensed matter systems are
simple and the number of degrees of freedom is small. They are good subjects for us to test the
method.

2. Bose system

As a Bose system, we consider a nonrelativistic Bose gas [3]. The action of a complex boson
field Φ(x) = Φ1(x)+ iΦ2(x) is

S0[Φ1,Φ2] =
∫

dτd3x
[
Φ
∗(x)

(
∂

∂τ
−µ− 1

2m
∆

)
Φ(x)+

1
4

λ |Φ(x)|4
]
. (2.1)

In nonrelativistic systems, the imaginary-time derivative is first order and thus anti-Hermitian. The
sign problem comes from this imaginary-time derivative. For numerical simulations, we discretize
this continuum action on the (3+1)-dimensional hypercubic lattice with the lattice spacing a. The
lattice size is V = NxNyNzNτ = 124. The boundary conditions are periodic. We set ma = 0.5 and
λ/a2 = 4.
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The Bose gas becomes the Bose-Einstein condensate at low temperature. The condensate
is identified by the long-range behavior of the two-point correlation function. When the system
includes a condensate component, the condensate fraction

R = lim
|x−y|→∞

〈Φ∗(x)Φ(y)〉
〈Φ∗(x)Φ(x)〉

, (2.2)

becomes nonzero. In Fig. 1, we show the simulation result of the condensate fraction and the
number density. The condensate fraction is nonzero and an increasing function of the chemical
potential µ . The normal component is dominant in small µ and the condensate component is
dominant in large µ .
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Figure 1: Condensate fraction R and number density n.

Next, we consider the rotation of this Bose-Einstein condensate. The rotating Bose-Einstein
condensate is generated and quantum vortex nucleation is observed in superfluid-helium and cold-
atom experiments [4]. To describe a rotating system, we transform coordinate from a rest frame to
a rotating frame. In a rotating frame, the action shifts as

SΩ = S0−ΩLz (2.3)

Lz = −i
∫

dτd3x Φ
∗(x)

(
x

∂

∂y
− y

∂

∂x

)
Φ(x). (2.4)

The schematic figure of the rotation is drawn in Fig. 2. Here we change the periodic boundary
conditions to the Dirichlet boundary conditions in x and y directions. The lattice size is V =

NxNy×NzNτ = 112×102.
In the rotating Bose-Einstein condensate, quantum vortices penetrate the condensate and carry

angular momentum. The criterion for quantum vortices is the circulation. The circulation is given
by the phase integral

Γ̂ =
∮ dx

2π

[
tan−1

(
Im[Φ(x+ ĵ)]
Re[Φ(x+ ĵ)]

)
− tan−1

(
Im[Φ(x)]
Re[Φ(x)]

)]
, (2.5)

along the square loop shown in Fig. 2. ĵ is the unit vector along the loop. The circulation Γ̂ in each
configuration is integer by definition. The values fluctuate in different configurations, and thus the
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ensemble average Γ≡ 〈Γ̂〉 is not integer. In Fig. 3, we show the simulation result of the circulation.
When the condensate fraction is large (µa = 0.5), the expectation value of the circulation is clearly
quantized. On the other hand, when the condensate fraction is small (µa = 0.2), it deviates from
integer due to strong quantum fluctuation.

angular velocity

circulation

z-axis

Figure 2: Schematic figure of rotation.
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Figure 3: Circulation Γ.

3. Fermi system

As a Fermi system, we consider the Hubbard model. The Hubbard model is a simplified model
of electrons in solids. In particular, the two-dimensional Hubbard model is an important model of
high-temperature superconductivity [5]. Also, the Hubbard model can be experimentally simulated
by the optical lattice of cold atoms [6].

The Hubbard model action is

S[Ψ∗↑,Ψ↑,Ψ
∗
↓,Ψ↓] =

∫
dτ ∑

x

[
∑

i=↑,↓
Ψ
∗
i (x)

(
∂

∂τ
−µi

)
Ψi(x)

− ∑
i=↑,↓

∑
j

ti
(
Ψ
∗
i (x)Ψi(x+ ĵ)+Ψ

∗
i (x+ ĵ)Ψi(x)

)
+UΨ

∗
↑(x)Ψ↑(x)Ψ

∗
↓(x)Ψ↓(x)

]
,

(3.1)

where ĵ is the unit vector to nearest neighbor sites. For attractive interaction U < 0, the four-
fermion interaction term is rewritten by an auxiliary real scalar field Φ through the Hubbard-
Stratonovich transformation. After performing the Grassmann integral, the partition function be-
comes

Z =
∫

DΦ detK↑[Φ]detK↓[Φ]e−SA[Φ] =
∫

DΦ e−S[Φ], (3.2)

and the total action becomes

S[Φ] = SA[Φ]−TrlnK↑[Φ]−TrlnK↓[Φ]. (3.3)

The auxiliary field action is

SA[Φ] =
∫

dτ ∑
x

1
2|U |

Φ
2(x), (3.4)
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which is positive definite. The fermion matrix is

Ki[Φ] =
∂

∂τ
−µi +Φ(x)−∑

j
ti(T+ j +T− j), (3.5)

where T± j represents the hopping term in j-direction. The condition for the sign problem is quite
different from the relativistic Dirac fermion. Since all the matrix elements of Ki[Φ] are real, the
determinant detKi[Φ] is real but not necessarily positive. When two spin components are degener-
ate, K↑[Φ] = K↓[Φ], the total determinant is semi-positive definite. On the other hand, when two
spin components are not degenerate, K↑[Φ] 6= K↓[Φ], the sign problem occurs. Unlike the Dirac
fermion, a chemical potential itself is harmless but the imbalance of chemical potentials causes the
sign problem.

We performed the numerical simulations of the attractive Hubbard model in two dimensions.
The hopping parameter is t↑a = t↓a = 0.05 and the total chemical potential is µ↑+ µ↓ = U . In
numerical simulations, the imaginary time τ is discretized with a temporal lattice spacing aτ . The
lattice size is V = NxNy×Nτ = 102×20. The temperature is aT = 1/Nτ = 0.05, where the system
is in a normal phase.

As a measure of the sign problem, we calculate the sign of the fermion determinant

ŝ =
detK↑[Φ]detK↓[Φ]

|detK↑[Φ]detK↓[Φ]|
(3.6)

in each configuration, and take the average in the sign-quenched Monte Carlo simulation as

s =
∫

DΦ ŝ |detK↑[Φ]detK↓[Φ]|e−SA[Φ]∫
DΦ|detK↑[Φ]detK↓[Φ]|e−SA[Φ]

. (3.7)

This is an analogy to the average phase of the Dirac determinant in the phase-quenched lattice
QCD simulation. In Fig. 4, the result is shown as a function of the chemical potential imbalance
∆µ . At ∆µ = 0, the sign is unity because of semi-positivity. In weakly interacting case (U/t = 1),
which is far away from the phase transition, the average sign is almost completely unity. In strongly
interacting case (U/t = 4), which is closer to the phase transition, the sign fluctuates and becomes
zero for large ∆µ . This sign fluctuation induces the sign problem. The sign problem is more crucial
when the system approaches the phase transition.

In the complex Langevin method of fermion systems, we must know the eigenvalue distribu-
tion. The eigenvalue distributions of typical configurations are shown in Fig. 5. In weak interacting
case (U/t = 1), the eigenvalue distribution has a gap around λ = 0. This gap essentially comes
from the lowest fermionic Matsubara frequency πT . In strong interacting case (U/t = 4), the dis-
tribution spreads by the quantum fluctuation and the gap disappears. The fermion action and the
evolution equation have a singularity at zero eigenvalue. When this singularity appears, the com-
plex Langevin method leads a wrong result [7]. Therefore, the complex Langevin method fails in
this fermion system because of the singularity problem. Unfortunately, we have no idea to solve
this problem at present.

In general, the singularity problem and the sign problem are separate problems. In this par-
ticular system, however, these problems appear at the same time when the eigenvalue distribution
hits λ = 0. At a high temperature or a weak coupling where is away from a phase transition, the
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Figure 4: The average sign s in the sign-quenched Monte Carlo simulations.
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Figure 5: Eigenvalue distributions of the fermion matrix.

fermion determinant is almost positive definite. As the system approaches the phase transition,
the fermion determinant crosses zero and becomes negative. The Monte Carlo method does not
work because of the sign problem and the complex Langevin method does not work because of the
singularity problem. Only in the region away from the phase transition, the contribution of zero
eigenvalues is negligible, and thus the complex Langevin method is valid. In this region, how-
ever, the Monte Carlo method also works well. Therefore, the complex Langevin method has no
essential advantage in the view point of the sign problem.
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