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We observe the effect of Coulomb interaction in three-dimensional Dirac semimetals in the

strong-coupling limit. Model of the system is constructed in terms of lattice gauge theory, with

the Coulomb interaction mediated by U(1) gauge field defined on the lattice. We improve the

formulation by introducing a field of positive background charge, and extrapolate our analysis

to the “continuous-time” limit, where the lattice spacing in the imaginary-time direction reaches

zero. We find that the system in the strong-coupling limit reduces to a strongly coupled repulsive

Hubbard model, which favors charge neutrality for each lattice site, turning the system into a Mott

insulator. We also evaluate the discretization error, to give a proper understanding of the effective

model obtained by strong-coupling expansion.
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1. Introduction

Dirac semimetal, which shows a doubly degenerate Dirac cone structure protected by time-
reversal and spatial inversion symmetry [1], has now been attracting a great interest as a material
to realize various theoretically nontrivial ideas for future applications. Graphene is a well-known
example of two-dimensional (2D) Dirac semimetals, which was successfully synthesized in early
2000s [2] and is now being intensely observed both theoretically and experimentally. In three-
dimensions (3D), on the other hand, the history of Dirac semimetal is quite new; it was first syn-
thesized in Na3Bi [3] and Cd3As2 [4] in 2014. The physical importance of 3D Dirac semimetals
is even larger than that in 2D, since it can evolve into various novel topological phases, such as
Weyl semimetals, topological insulators, axionic insulators, etc., by controlling the symmetries
of the system. The physical properties of 3D Dirac semimetals are now widely studied, and ex-
periments have shown some nontrivial properties characteristic to Dirac semimetals, such as the
anomaly-induced negative magnetoresistance in ZrTe5 [5].

It is possible that electron-electron interaction, such as Coulomb interaction, can change the
above properties of Dirac semimetals. Since the Fermi velocityvF of electrons is slower than the
velocity of photons, namely the speed of lightc, the electrons feel an effectively strong Coulomb
interaction enhanced by the factor ofc/vF at the classical level, which might make the many-body
effect non-negligible. Many-body effect can modify the electronic properties in Dirac semimetals,
such as Fermi velocity; renormalization of Fermi velocity has long been discussed and recently
been observed in the context of graphene, showing a strong enhancement of Fermi velocity around
the Dirac points [6].

If the many-body effect is strong enough, it is also possible to induce spontaneous opening
of a bandgap in the Dirac spectrum, turning the system into a Mott insulator. Such a spontaneous
gap generation is analogous to the quark mass generation mechanism in early universe, where
the chiral symmetry of quarks gets spontaneously broken under the strong interaction in quan-
tum chromodynamics (QCD). There have been various theoretical studies on many-body effects
in Dirac semimetals in terms of quantum electrodynamics (QED), based on such an analogy; in
3D Dirac semimetals, there have been perturbative analysis based on weak-coupling expansion
[7], renormalization group (RG) analysis using many-flavor (large-N) approximation [8], lattice
gauge theory analysis with strong-coupling expansion [9], etc. The lattice strong-coupling analysis
suggests that the presence or absence of spontaneous gap generation would depend on the dimen-
sionality of the system, even in the strong-coupling limit of the Coulomb interaction, while leaving
its physical origin as an open question.

In this work, we improve the lattice strong-coupling expansion technique employed in Ref. [9].
We take into account arbitrariness of the lattice spacing discretized in the temporal direction, to
evaluate the discretization error and to extrapolate our strong-coupling analysis to the continuous-
time limit. We also introduce the background charge field, corresponding to the positive ions sitting
at each lattice site, to account for the overall charge neutrality. As a result, we find that the Mott
insulator phase is reached in the strong-coupling limit, irrespective of spatial dimensionality, due
to the local charge neutrality required by the suppression of photon propagation. We show that the
suppression of bandgap in the strong-coupling limit shown in the previous analysis is an artifact of
the discretization of imaginary time.
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2. Model

We start from the Hamiltonian of Dirac fermions sitting on a square lattice, given by

H0
F = t ∑

r , j, f
η j(r)

[
ψ†

f (r)ψ f (r +aĵ)+H.c.
]
−µbg∑

r
b†(r)b(r), (2.1)

which is the Hamiltonian form of the “staggered fermion” in the context of lattice fermion for-
malism. Herer = (r1, . . . , rd) is the position of a lattice site with the spacinga, j runs over the
spatial dimensions from1 to d, and ĵ is the unit vector along thej-axis.t is the hopping amplitude,
with the staggered phase factorη j defined byη1(r) = 0, η j≥2(r) = (−1)r1/a+···r j−1/a. ψ(†)

f (r)
is the annihilation (creation) operator of an electron with “flavor”f at siter , and the eigenvalues

for the electron sector are given in the momentum space asE(k) = 2t
√

∑ j cos2(akj). These bands

show the Dirac cone structure with the slope (Fermi velocity)vF = 2at around2d points in the
momentum space,Kν1···νd = (π/2a)(ν1, · · · ,νd), where each ofν j takes the value either+1 or−1.

Here we have also introduced the field of background chargeb(†), representing the positive
ions sitting on the lattice sites, to ensure the overall charge neutrality of the system, since nonzero
total charge leads to divergence of the total Coulomb energy. If the number of flavorf is 2, such
as spin-1/2 degrees of freedom, and the Fermi level is at the Dirac points, we need a single species
of this background field to cancel the total charge. The background chemical potentialµbg is set
deeply under the Fermi level, so that those ions should be bound at each site.

Now we recast the partition functionZ = Tre−βHF in path-integral formalism, following the
conventional procedure: by splitting the imaginary timeτ ∈ [0,β ) into infinitely small time-slices
aτ = β/Nτ and inserting the complete system formed by the fermion coherent states, we obtain the
lattice action

S0
F [ψ

†,ψ;b†,b] = aτ ∑
r ,τ

[
∑

f

ψ†
f (r ,τ)∂

+
τ ψ f (r ,τ)+b†(r ,τ)(∂+

τ −µbg)b(r ,τ)

]
+aτ ∑

τ
H0

F(τ).(2.2)

The temporal lattice spacingaτ is independent of the spatial onea, and it should be taken infinitely
small so that the path integral should be well defined. Here we first takeaτ finite, and take the
continuous-time limitaτ → 0 after the strong-coupling expansion treatment shown below.

As a consequence of this construction procedure, we use the forward difference∂+
τ ξ (τ) ≡

[ξ (τ +aτ)−ξ (τ)]/aτ , instead of the forward-backward difference like[χ†(τ)χ(τ +aτ)− χ†(τ +
aτ)χ(τ)]/2aτ appearing in the staggered formalism. The kernel of this forward difference can be
diagonalized asK(ωn) = e−iωnaτ −1, by using the fermionic Matsubara frequency

ωn =
2π
β

(
n+

1
2

)
=

2π
aτ

n+1/2
Nτ

. (n= 0,1, . . .Nτ −1) (2.3)

Since this kernel shows only the trivial zero-pointK(ω = 0) = 0 in the momentum (frequency)
space, we can avoid the doubling in the temporal direction and can use the original “flavor” degrees
of freedom without reducing them to match the number of flavors1.

Based on this lattice fermion model, we introduce the Coulomb interaction mediated by the
electromagnetic field, namely the U(1) gauge field. Since the velocity of the fermions is much

1This does not violate the Nielsen–Ninomiya’s theorem, since the kernel matrix here is not (anti-)Hermitian.
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slower than the speed of light, e.g.vF = 1.3×106m/s in Cd3As2, we can ignore the retardation
effect of the electromagnetic field, given by the spatial components of the gauge potential2. Thus
we only need the dynamics of the scalar potentialA0, and its minimal coupling to the fermionic
fields is given byδSF =−i

∫
dτ ∑r A0[∑ f ψ†

f ψ −b†b] in the continuous-time limit.
In the U(1)-compact formalism, the gauge variable is defined byU0(r ,τ) = exp[iaτA0(r ,τ)].

SinceA0 is coupled to the local charge density in the continuous-time limit, we define the compact
gauge variables not on the lattice links, but on each lattice site. In order to avoid the discretization
error up toO(a2

τA2
0), the discretized minimal coupling part should be

δSF [ψ†,ψ;b†,b;U0] = ∑
r ,τ

U0−U†
0

2

[
∑

f

ψ†
f ψ f −b†b

]
. (2.4)

Since we are interested in the strong-coupling limitg2 → ∞, we neglect the gauge dynamics part,
given bySG = (2g2)−1∫ dτd3r(∇A0)

2 in the continuum limit.

3. Strong-coupling analysis

Now we are ready to analyze the electron correlation properties, using the lattice model con-
structed above. Since the gauge dynamicsSG is neglected in the strong-coupling limitg−2 = 0, the
photon fieldU0 does not propagate spatially. Thus the gauge field correlates the charge densities
only at the same lattice site; integrating out the gauge variablesU0, we obtain an effective action
for fermions,

Seff
F [ψ†,ψ;b†,b] = S0

F [ψ†,ψ;b†,b]+
1
2 ∑

r ,τ

[
ψ†
↑ψ↑ψ†

↓ψ↓−ψ†
↑ψ↑b

†b−ψ†
↓ψ↓b

†b
]
. (3.1)

Here the second term in Eq.(3.1) can be rewritten as(1/4)∑r ,τ n2(r ,τ), where the local charge
densityn = ∑ f ψ†

f ψ f − b†b. Since we are left with the temporal difference terms with∂+
τ , the

effective action can be rewritten by the Hamiltonian formalism,

Heff
F = H0

F +
1

4aτ
∑
r

n2(r). (3.2)

This effective Hamiltonian can be regarded as a repulsive Hubbard model, which favors charge
neutrality, i.e.∑ f ψ†

f ψ f −b†b= 0, for each lattice site. The effective coupling constant appears as
Ueff = 1/4aτ .

In the continuous-time limitaτ → 0, the local charge neutrality is strongly required due to the
infinitely strong Hubbard repulsionUeff → ∞, which fixes one electron for each site. This is the
straightforward consequence of the absence of photon propagation, which can be reproduced in the
continuum limit(a→ 0) as well; the coupling between the fermions and the photons is given by
the exponential factorexp[−

∫
dτd3r iA0(r ,τ)n(r ,τ)] in the path integral formalism. Integrating

out the photon degrees of freedom(A0), we are left with delta functions,∏r ,τ δ (n(r ,τ)), which is
exactly the “local charge neutrality” condition. Since the hopping of electrons is prohibited under
the local charge neutrality, the system becomes a Mott insulator.

2In other words, the spatial components are quite weakly coupled, which should be treated by weak-coupling
expansion.
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Figure 1: The behavior of the magnitude of the antiferromagnetic order (Neél vector)|φφφ | as a function of
the parameterµ = 2aτ t = (aτ/a)vF , in 3D (d = 3). The order parameter saturates in the continuous-time
limit aτ → 0, and vanishes at the critical valueµc = 0.152.

The Mott transition discussed here can be directly observed by focusing on the order parameter
under the mean-field analysis. It is well known that the ground state of the strong Hubbard repulsion
is antiferromagnetism, characterized by the Neél vector,φφφ(r ,τ) = (−1)(r1+···+rd)/a⟨ψ†σσσψ⟩(r ,τ),
whereσσσ is the2×2 Pauli matrix. Taking the Neél vector as a mean field, we can easily integrate
out the fermionic degrees of freedom, to obtain the effective potential (free energy) of the system
as a function ofφφφ ,

Feff(φφφ) =− 1
βN3 lnZ(φφφ) =

1
12aτ

|φφφ |2− 1
aτN3 ∑

q
ε(φφφ ;q), (3.3)

where the summation over the Matsubara frequencyωn is taken at zero temperature. Hereε(φφφ ;q)=[
|φφφ/6aτ |2+(2t)2 ∑ j cos2(aqj)

]1/2
is the single-particle energy of electron under the mean fieldφφφ ,

which opens a mass gap for finiteφφφ . The expectation value of the Neél vectorφφφ corresponds
to the minimum of the free energy in Eq.(3.3). This minimum depends on the single parameter
µ ≡ 2aτt = (aτ/a)vF , whose behavior in 3D(d= 3) is shown in Fig.1. The magnitude of the Neél
vector |φφφ | saturates at the continuous-time limitaτ = 0, monotonically decreases asµ increases,
and vanishes at the critical valueµc = 0.152at the mean-field level.

We can check that this result can be related to the previous strong-coupling analysis in 3D
Dirac semimetals [9]; the lattice spacings in that analysis are fixed asaτ/a= v−1

F , so that the lattice
should be hyper-cubic in the spacetime under the scale transformationτ 7→ τ/vF . This corresponds
to the parameterµ fixed at1 in the present argument, where|φφφ | completely vanishes and the system
becomes gapless, in agreement with Ref. [9].

4. Lattice anisotropy

So far we have employed the lattice with a cubic symmetry. In realistic 3D Dirac semimetals,
however, there exists a lattice anisotropy distinguishing one axis from the other, due to the lay-
ered structure in the synthesis process. Here we introduce an anisotropy in the nearest-neighbor
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Figure 2: The phase diagram characterizing the presence(φφφ ̸= 0) or the absence(φφφ = 0) of the antiferro-
magnetism (Neél order), parametrized byµ = (aτ/a)vF andν = tz/t⊥. The system is antiferromagnetic in
the continuous-time limit(µ = 0), independently of the dimensionality parameterν.

hopping amplitudet; we define the hopping amplitudes in thez- andx/y-directions astz andt⊥,
respectively, and denote their ratio by the dimensionless parameterν = tz/t⊥. ν characterizes the
“dimensionality” of the system: ifν = 1, the lattice is perfectly (spatially) 3D-cubic, reproducing
the properties discussed in the previous section. On the other hand, ifν = 0, there is no hopping in
thez-direction, and the system becomes just an ensemble of 2D slabs stacked on top of one another.
Thusν ∈ (0,1) characterizes the “intermediate” state between 2D and 3D.

Following the process of mean-field analysis in the previous section, we can estimate the
mean-field expectation value of the Neél vector (antiferromagnetic order parameter)|φφφ | in the
strong-coupling and zero-temperature limit, as a function of the parametersµ and ν . Taking
µ = (aτ/a)vF andν = tz/t⊥ as control parameters, we obtain a phase diagram characterizing the
presence or absence of the antiferromagnetismφφφ , as shown in Fig.2. We can see that the system
always shows the antiferromagnetism in the continuous-time limitµ ∝ aτ = 0, independently of
the dimensionality, which is indeed the consequence of the infinitely strong Coulomb interaction,
i.e. the photon-mediated electron correlation in the strong-coupling limit. The dimensionality-
dependent phase transition observed in Ref. [9] can be understood as an artifact of the finite lattice
spacing in the temporal direction, which moderates the infrared singularity atφφφ = 0.

5. Summary

In this work, we have observed the electron correlation effects in 3D Dirac semimetals, by
using the strong coupling expansion of lattice gauge theory. We have improved the discretization
of the imaginary time by employing the forward difference instead of the forward-backward dif-
ference, to investigate the lattice spacing (aτ -) dependence and to meet the path-integral formalism
correctly. We have also introduced the field of the positive background charge, coming from the
positive ions sitting at each lattice site.
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In the strong-coupling limit, the integration over the gauge field generates a strong on-site
(Hubbard) repulsion of fermions, leading to an antiferromagnetic order and opening a bandgap
at the Dirac nodes. Such a strong Hubbard repulsion originates from the local charge neutrality
required by the coupling to the gauge field, which can be reproduced in the continuum limit. By
introducing an anisotropy in the hopping amplitudes (or the Fermi velocity), we have found that
the antiferromagnetic order appears independently of the anisotropy in the continuous-time limit,
i.e. there arises a bandgap either in 2D or 3D limits.

The analysis in the continuous-time limit here shows a clear difference with the previous
strong-coupling analysis using the staggered fermion formalism [9], where the antiferromagnetic
order vanishes in 3D and appears in the intermediate state between 2D and 3D. Such a behavior
can be understood as an artifact of the discretization of time, since it can be reproduced by tak-
ing the temporal lattice spacingaτ comparable toa/vF , i.e. away from the continuous-time limit.
Although it is unphysical to takeaτ finite, it still serves as an effective method to introduce the
screening effect of Coulomb interaction, since it reduces the strength of the on-site repulsion and
moderates the infrared singularity at zero-momentum in the one-loop self-energy of the fermions.

The strong-coupling analysis performed here is a starting point for exploring the finite-coupling
regime, away from the strong-coupling limit. Finite-coupling regime can be reached by the strong-
coupling expansion, namely the power series expansion by the inverse coupling constantg−1

around the strong-coupling limitg−1 = 0. Finite g−1 enables the photon propagation, which cor-
relates the charge densities at different lattice sites; thus it may modify the electron correlation
properties non-locally, leading to the renormalization of the Fermi velocityvF as well as the reduc-
tion of the bandgap. It remains an important question to compare the renormalization group flow
of vF from the strong-coupling limit with that from the weak-coupling limit, suggested in previous
literatures.
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