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1. Introduction

The eigenvalue density (or spectral function) of the Dirac operator

ρ(λ ) =
1
V
⟨∑

i
δ (λ −λi)⟩ (1.1)

provides a probe of the spontaneous chiral symmetry breaking in QCD through the Banks-Casher
relation ρ(0) = Σ/π [1], where Σ denotes the chiral condensate Σ =−⟨q̄q⟩ in the thermodynamical
limit. The functional form of ρ(λ ) at small λ is computed by one-loop chiral perturbation theory
in the p-regime [2] and in the mixed regime [3], but the value of Σ is to be determined by non-
perturbative QCD calculations.

The most direct way of obtaining the eigenvalue density in lattice QCD is to calculate the
individual low-lying eigenvalues and to count the number of them falling in a region suffciently
close to zero. This method was adopted in our previous works to extract the chiral condensate in
2+1-flavor QCD [4, 5] using the overlap-Dirac operator. For larger volumes, however, it becomes
computationally more demanding because of the cost and memory requirement of the Lanczos-type
algorithms.

An alternative way is to stochasitically estimate the number of eigenvalues below some thresh-
old. It was first implemented in [6] for this particular problem. In this work we introduce a variant
of this method to calculate the spectral function. Namely, we utilize the Chebyshev filtering tech-
nique combined with a stochastic estimate of the mode number. As described in the next section,
the method is more flexible and can be used to calculate the whole spectrum at once. We use
the lattice ensembles generated with 2+1 flavors of the Mobius domain-wall fermion at a lattice
spacing a ≃ 0.08 fm.

2. Chebyshev filetering

One can evaluate the number of eigenvalues in an interval [a,b] of a hermitian matrix A, which
is supposed to be D†D of any lattice Dirac operator D, as

n[a,b] =
1

Nv

Nv

∑
k=1

ξ †
k h(A)ξk (2.1)

with Gaussian random vectors ξk, which has a normalization (1/Nv)∑Nv
k=1 ξ †

k ξk = 12V in the limit
of large Nv the number of random vectors. h(A) is a function of matrix A that works as a filter
of eigenvalues. Without h(A), (2.1) simply counts the total mode number. By preparing h(x)
returning 1 in the range [a,b] and 0 elsewhere, we may stochastically count the number of modes
in that interval. The statistical error is given by a square-root of the mode number in [a,b]; when the
number of eigenvalues in the range [a,b] is sufficiently large, Nv = 1 could already give a precise
estimate.

One can use the Chebyshev polynomial Tj(x) to approximate the filter h(x):

h(x) =
p

∑
j=0

gp
j γ jTj(x). (2.2)
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Figure 1: Step function approximation given by the Chebyshev polynomial at order p = 8000. Typical
results for the interval [0,δ ] = 0.01, 0.005, 0.002 and 0.001 are shown from right to left.

The coefficients γ j and gp
j are known numbers fixed once the interval [a,b] is given. The conven-

tional Chebyshev minmax approximation is obtained with γ j, while the Jackson stabilization factor
gp

j is introduced to suppress the oscillation typical in the Chebyshev expansion [7]. In order for the
Chebyshev approximation to work, the whole eigenvalues of A have to be in the range [−1,1].

After the ensemble average (over gauge configurations) one obtains

n̄[a,b] =
1

Nv

Nv

∑
k=1

[
p

∑
j=0

gp
j γ j⟨ξ †

k Tj(A)ξk⟩

]
. (2.3)

An important observation is that once the stochastic estimates of ⟨ξ †
k Tj(A)ξk⟩ are calculated for

each j the eigenvalue count in any interval [a,b] can be obtained by combining them with the
corresponding coefficients gp

j γ j. Namely, the interval can be adjusted afterwards, independent of
the costly calculation of the polynomial of the matrix A. Details of the method are found in [7].

The Chebyshev polynomial can be easily constructed using the recurrence formula

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)−Tj−2(x). (2.4)

One can also use the relations T2n−1(x) = 2Tn−1(x)Tn(x)−T1(x) and T2n(x) = 2T 2
n (x)−T0(x), in

order to reduce the numerical efforts. With infinitely large p the filtering function h(x) is exactly
reproduced; at finite p, the approximating function is smeared around the borders a and b, leading
to a systematic error.

For the four-dimensional effective Dirac operator of domain-wall fermion, the eigenvalues of
D†D are in the range [0,1]. In Figure 1, we plot the step functions for the interval [0,δ ] of the
eigenvalue of |D| with δ = 0.01, 0.005, 0.002 and 0.001. (For the correspondence between the
eigenvalues of D†D and those of |D|, see below.) The polynomial order is fixed to p = 8000. One
can see that the step function is well approximated away from the boundary. Near the boundary,
the edge is rounded off. Its effect is relatively more important for smaller δ . The error estimated
for the area, which has to be δ , is 0.8% for δ = 0.01 and 1.5% for δ = 0.005, scaling as 1/δ .
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3. Lattice calculation

The JLQCD collaboration has generated a new set of ensembles of 2+1-flavor QCD with
Mobius domain-wall fermion for sea quarks. It aims at achieving good chiral symmetry, i.e. the
residual mass is order 1 MeV or smaller. Three lattice spacings are chosen as 1/a = 2.45, 3.61 and
4.50 GeV, which allow well controlled continuum extrapolation even including charm quarks as
valence quarks. The up and down quark masses correspond to the pion mass Mπ of 230, 300, 400
and 500 MeV; two strange quark masses are chosen such that they sandwich the physical value.
Lattice volume is 323 × 64, 483 × 96 and 643 × 128, depending on the lattice spacing, and the
physical volume satisfies the nominal condition MπL > 4. This set of ensembles have been used
for a variety of applications [8, 9, 10, 11, 12].

In this preliminary work, we use the coarse lattice (1/a = 2.45 GeV) of size 323 × 64, out of
the above mentioned ensembles. The number of configurations is 50 for each ensemble, taken out
of 10,000 HMC trajectories. The number Nv of the Gaussian noise vector ξk is 1. The up and down
quark masses in the lattice unit are amud = 0.019, 0.012, 0.007 and 0.0035.

We calculate the eigenvalue density of the hermitian operator D(4)†D(4) made of the four-
dimensional (4D) effective operator

D(4) = [P−1(D(5)(m = 1))−1D(5)(m = 0)P]11. (3.1)

Here, D(5)(m) represents the five-dimensional (5D) Mobius domain-wall operator with mass m. For
the eigenvalue count we took m = 0, i.e. the massless Dirac operator. The 4D effective operator
is constructed by multiplying the inverse of the Pauli-Villas operator (m = 1) and taking the 4D
surfaces (represented by the subscript “11”) appropriately projected onto left- and right-handed
modes by a projection operator P. See, for instance, [13] for more details.

For each application of D(4) on 4D vectors, we have to calculate the inverse of the Pauli-
Villars operator, for which the conjugate gradient iteration of order 40–50 is involved. Although the
inversion is much less expensive than the calculation of light quark propagator, the total numerical
cost is substantial because we have to multiply D(4)†D(4) p-times. (p = 8000 in this analysis.)

The eigenvalues of D(4)†D(4) are in the region [0,1], and we rescale the operator as A =

2D(4)†D(4)− 1 to match the region of the Chebyshev approximation. Since the effective 4D op-
erator satisfies the Gisparg-Wilson relation very precisely, we assume that eigenvalues of D(4) lie
on a circle in the complex plane. In the following, the eigenvalue λ stands for that projected onto
the imaginary axis as λ =

√
λD(4)†D(4)/(1−λD(4)†D(4)).

Figure 2 shows the eigenvalue spectrum for the whole range of λ in the lattice unit. Both axes
are in a logarithmic scale. For each bin of [a,b], it is constructed as ρ(λ ;δ ) = (1/2V )n̄[a,b]/δ
with a bin size δ . (Therefore, it satisfies λ =

√
a/(1−a) and λ +δ =

√
b/(1−b).)

One can clearly see that the number of eigenvalues increases toward higher λ and saturate at
some point of O(1) due to the discretization effect, which should otherwise behave like ∼ λ 3 for
asymptotically large λ . There is no visible quark mass dependence in this region. On the lowest
end, it approaches a constant corresponding to ρ(0), from which one extracts the chiral condensate.

The same data are plotted in Figure 3 in a linear scale. The individual bin has a width of δ =
0.005. With this binsize, the systematic error due to the Chebyshev approximation is well below
the statistical error.
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Figure 2: Spectral function in a logarithmic scale. The lattice data are plotted for four values of up and
down quark masses.
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Figure 3: Spectral function in a linear scale. The binsize is taken as δ = 0.005. The lattice data are plotted
for four values of up and down quark masses (histogram with four different colors). Curves are those of
one-loop chiral perturbation theory.

4. Analysis using χPT formula

Figure 3 shows a clear dependence of ρ(0) on the sea up and down quark mass mud . Namely,
ρ(0) gets lower for smaller mud . Furthermore, a peak develops near λ = 0 for heavier sea quarks.
Qualitatively, it is understood as the effect that the fermion determinant is no longer active below
λ ≲ mud to suppress the near-zero modes. More near-zero eigenvalues may then survive for larger
mud .

In order to obtain the chiral condensate Σ, one has to take the thermodynamical limit, i.e.
the infinite volume limit and then the massless quark limit. The order of the limits is crucial;
ρ(0) vanishes in the massless limit on any finite volumes. Fortunately, such volume and mass
dependences are well understood in chiral perturbation theory (χPT), and we may identify the
volume beyond which the system is effectively in the large volume limit. All our lattices satisfy
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Figure 4: Chiral extrapolation of the partially integrated spectral function ρ[0,δ ] with δ = 0.01. The one-
loop χPT curve at N f = 2 is shown together with the lattice data (black square).

that condition, and we use the p-regime χPT formula in the following analysis.
One-loop formula for N f = 2 is available in [2]. It is written in terms of the leading order

low-energy constants (LEC) Σ and F as well as the next-to-leading order LEC L6. The pion decay
constant controls the size of the next-to-leading order corrections. In this preliminary analysis, we
fix it to a nominal value F = 90 MeV.

We fit the value of ρ̄ [0,δ ] = (1/δ )
∫ δ

0 dλρ(λ ) with the one-loop χPT expression with δ =

0.01. Namely, both the lattice data and one-loop χPT are integrated in the same region. This
value of δ corresponds to the scale of pion mass of δΣ/F2 ≃ 300 MeV, for which one expects that
one-loop χPT converges reasonably well.

Chiral extrapolation of ρ [0,0.01] is shown in Figure 4. The one-loop χPT curve shows a slight
curvature due to the chiral logarithm. The fit yields Σ1/3 = 262.0(1.7) MeV and L6 = 0.00031(7)
with χ2/dof = 1.13.

Renormalizing to the MS scheme at 2 GeV, we obtain [Σ(2 GeV)]1/3 = 260.0(1.7) MeV, where
we use the renormalization factor ZS(2 GeV) determined from the analysis of short-distance current
correlator [10].

Probably because the strange quark is too heavy to apply one-loop χPT, a fit with the 2+1-
flavor χPT formula failed to reproduce the lattice data.

5. Discussions

The Chebyshev filtering technique allows precise evaluation of the eigenvalue count in a suf-
ficiently small bin to calculate the eigenvalue spectrum. The method is especially suitable for the
4D effective operator of the domain-wall fermion since the eigenvalue of D(4)†D(4) is limited in
[0,1]. For the Wilson fermion, the range is [0,64] (in the free theory), and one needs much higher
order polynomial to obtain the same precision. This would nearly compensate the numerical effort
to construct the (expensive) 4D effective Dirac operator from domain-wall fermion.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
6
7

Stochastic calculation of QCD Dirac spectrum S. Hashimoto

This preliminary analysis has been done using partial data out of the full data set at three lattice
spacings and various sea quark masses. We plan to include the data on finer lattices that allow us
to extrapolate to the continuum limit.

We are grateful to Julius Kuti for private communications on the technique employed in this
work. Their own work was also presented at this conference. Numerical calculation was performed
on the Blue Gene/Q supercomputer at High Energy Accelerator Research Organization (KEK)
under a support of its Large Scale Simulation Program (No. 14/15-10). The code set Iroiro++
[14], which is highly optimized for Blue Gene/Q, is used. This work is supported in part by JSPS
KAKENHI Grant Number 26247043.
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