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We present a calculation of the phase-shift for π-π scattering in isospin-1, spin-1 channel in
the elastic region. The mass and width of the rho resonance is extracted by fitting these phase-
shifts. To vary the scattering momentum we employ asymmetric boxes. We use N f = 2 nHYP-
smeared clover fermions and generate two sets of ensembles with pion masses about 315MeV
and 227MeV. To determine the phase shifts we compute the energy spectrum both for states at
rest and boosted. We employ a variational analysis with interpolating fields including several qq̄

and ππ interpolating fields with different scattering momenta.
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1. Introduction

Phase shifts for elastic scattering can be computed from the energies of two-particle states in
a periodic box with the help of Lüscher’s method [1, 2, 3, 4]. In this study, we will focus on the
ρ(770) resonance that appears in isospin-1, spin-1 channel for π-π scattering.

To trace the phase shift through the resonance region, we vary the scattering momentum in
small steps using a set of elongated boxes [5, 6, 7, 8, 9]. The basic idea is that the particles scattering
have a momentum of the order O(2π/L), where L is the size of the box. By increasing the direction
of the lattice in one direction we access the relevant kinematic region while the cost of generating
these ensembles is proportional with L rather than L3 as is the case for symmetric boxes. The
geometry of the boxes used in this study was designed to produce momenta in the right kinematic
region. Additional points in this region are determined by examining the spectrum two-hadron states
with non-zero total momentum [10]. We build interpolator fields with total momentum P = (0,0,0)
and ones with P = (0,0,1) along the elongated direction.

For each ensemble we extract phase-shifts for multiple center of mass energies by computing a
tower of excited states in the relevant channel. To facilitate this we employ a variational method [3],
using a set of interpolator fields that overlap well with the lowest states in this channel. In our
case we choose several quark-antiquark (qq̄) interpolators and several π-π interpolators with the
momentum of the moving pions chosen to have a good overlap with the scattering states expected to
appear in this region. The Wick contractions needed to compute the correlation matrix lead to a
large number of diagrams. The most expensive ones are four-point diagrams that require basically
the calculation of the all-to-all quark propagator. Stochastic methods can be used to compute these
diagrams, but for large number of diagrams a better approach is to use LapH smearing [11]. We
used LapH approach in this study.

We generated two sets of N f = 2 ensembles using nHYP-smeared clover fermions [12] for
two different sea quark masses: one set with pion mass mπ ≈ 315MeV and another set with
mπ ≈ 227MeV. Each set has three ensembles with different elongation factor η , with geometry of
the box L×L×ηL. The details are listed in Table 1.

2. Symmetries and phase shift formula

The eigenstates of the Hamiltonian in a finite box form degenerate multiplets that mix with
each other under the symmetry transformations of the box. The multiplets correspond to invariant
subspaces under the action of the symmetry group of the box. The action of the group in these

mπ L/a T/a a η Nc f g Nvecs

315MeV 24 48 0.121(1) 1.0 300 100
1.25 300 100
2.0 300 100

227MeV 24 64 0.1215(9) 1.0 400 100
1.17 400 100
1.33 400 100

Oh D4h

irreducible Reps. l irreducible Reps. l
A1 0,4,6, ... A1 0,2,3, ...
A2 3,6, ... A2 1,3,4, ...
F1 1,3,4,5,6, ... B1 2,3,4, ...
F2 2,3,4,5,6, ... B2 2,3,4, ...
E 2,4,5,6, ... E 1,2,3,4, ...

Table 1: (Left) Ensembles details: elongation η , lattice spacing a, number of configurations Nc f g and number
of eigenvectors Nvec for LapH smearing. (Right) Angular momentum mixing for the irreps in Oh and D4h.
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invariant spaces is given by its irreducible representations (irreps). To connect the energy of the
multiplets with the phase-shifts we need to identify the irrep of the eigenstate. To guarantee this we
build interpolator fields with the appropriate transformation symmetry.

The rotational symmetries of the cubic and elongated box are reduced from SO(3) to Oh

and D4h. The irreps of Oh and D4h overlap with different irreps of SO(3) labeled by the angular
momentum l. The overlaps are shown in Table 1. For ρ resonance, we will focus on those irreps
that mix with angular momentum l = 1. In the D4h case, the relevant irreps are A2 and E irreps.
A2 is a one dimensional irrep and the lowest energy scattering states in this channel correspond to
two-hadrons moving back-to-back in the elongated direction. E is a two dimensional irrep and the
lowest state corresponds to back-to-back momentum in the two transversal directions. Therefore,
changing the elongation factor η affects more the lowest eigenstates of the system in A2 irrep. Hence,
A2 is the irrep we will focus in our study. We note that the A2 irrep also mixes with l = 3 and higher
angular momentum states. In the ρ-resonance energy range the effect of these mixings is small and
it is safe to neglect them.

To extract phase-shifts for additional center-of-mass energies, we also consider states with total
momentum P = (0,0,1) in the elongated direction. For this choice the symmetry group remains the
same, D4h, since the relativistic expansion affects only the elongated direction.

The Lüscher’s formula in the A2 irrep for the states at rest is the following:

cotδ1(k) = W00 +
2√
5
W20, (2.1)

where

Wlm(1,q2,η) =
Zlm(1,q2,η)

ηπ
3
2 ql+1

, q =
kL
2π

. (2.2)

The scattering momentum k =
√
(E/2)2−m2

π is extracted from the energy of the state E and the
mass of the pion. The zeta function is defined as

Zlm(s;q2,η) = ∑
n∈Pη

Ylm(n)(n2−q2)−s , Pη = {(n1,n2,n3/η)|n ∈ Z3} . (2.3)

This formula can be extended to the boost case when the resonance has non-zero total momentum
P = (0,0,1) by modifying the W and zeta function with the boost factor γ:

Wlm(1,q2,η) =
Z P

lm(1,q
2,η)

γηπ
3
2 ql+1

, Ecm =
√

E2−P2 , γ =
E

Ecm
,

Z P̂
lm(s;q2,η) = ∑

n∈Pγη

Ylm(n)(n2−q2)−s , Pγη = {(n1,n2,(n3 +1/2)/(γη)|n ∈ Z3} .
(2.4)

3. Interpolating fields

In order to extract the energy spectrum from the correlation functions
〈
Oi(t f )O

†
i (ti)

〉
in A2

irrep, we construct four qq̄ interpolating fields and two ππ interpolators with different back-to-back
momenta. All of these operators should have the same quantum number as the ρ resonance. They
qq̄ interpolating fields are:

ρ
J(t f ) = ū(t f )Γt f At f (p)d(t f ) , ρ

J†(ti) = d̄(ti)Γ
†
tiA

†
ti(p)u(ti) . (3.1)
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N Γt f At f Γ
†
ti A†

ti

1 γi eip −γi e−ip

2 γ4γi eip γ4γi e−ip

3 γi ∇ jeip∇ j γi ∇
†
je
−ip∇

†
j

4 1
2 {eip,∇i} −1

2 {e−ip,∇i}

Table 2: qq̄ operator lists.

where the Γ matrices are listed in Table 2. For the total momentum P = (0,0,0) case, the ππ

interpolating field with back-to-back momentum along the elongated z-directions is:

ππ001(p1,p2, t) =
1√
2
[π+(p1)π

−(p2)−π
+(p2)π

−(p1)] , p1 = (0,0, pz) p2 =−p1. (3.2)

The ππ operator with back-to-back momentum p1 = (0,1,1) and p2 = (0,−1,−1) generates a
reducible four-dimensional subspace under the action of the symmetry group. The projection onto
the A2 irrep is:

ππ011 =
1
2
(ππ(011)+ππ(101)+ππ(−101)+ππ(0−11)). (3.3)

A similar procedure is used to construct the ππ operators in a moving frame P 6= 0.
We build up a 6×6 correlation matrix using four qq̄ interpolators, ππ001 and ππ011. For C

ρJ←ρJ′

and Cρi←ππ the correlation functions generated by the Wick contractions are the following

Cρi←ρ j =−

〈 ΓJ
t f
,(p, t f )

Γ
J′†
ti ,(−p, ti)

〉
, Cρi←ππ =

〈
−

〉
. (3.4)

Similarly, the Cππ←ππ correlators are represented by the possible four points quark diagrams:

Cππ←ππ =−

〈
+ − − + −

〉
. (3.5)

The all-to-all propagators is required to evaluate the three-points and four-points quark diagrams. The
Lapalacian Heaviside (LapH) method [13] offers a way to efficiently evaluated the all-to-all smeared
quark propagator. The quark fields in the interpolator fields are replaced with smeared quarks,
leading to new interpolating fields with the same symmetry properties. The correlation functions for
these interpolators require only the all-to-all smeared quark propagator. The smearing operator is
constructed using the eigenvectors of the Laplacian operator up a cutoff SΛ(t) = ∑

Λ

λ (t) |λ (t)〉〈λ (t)|.
The radius of the smearing is controlled by the number of eigenvectors used in this expansion. We
use 100 eigenvectors for all ensembles and the smearing radius is about 0.5fm.

4. Phase shift and resonance parameters

We extract three energy levels for each ensemble both for P = (0,0,0) and P = (0,0,1) states.
Using the formula in Eq. 2.2, for each energy level, we compute the corresponding phase-shift. In
Fig. 1 we show all the phase-shifts we computed.
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Figure 1: (Left) mπ ≈ 315MeV phase-shift data fitted with both Breit Wigner form (dashed line) and
modified form (solid line). (Right) mπ ≈ 227MeV ensembles data fitted with centrifugal barrier term.

To extract the resonance parameters we use the Breit-Wigner parametrization:

tanδ (E) =
E Γ(E)

m2
ρ −E2 with ΓBW(E) =

g2
ρππ

6π

p3

E2 . (4.1)

We perform a correlated χ2 fit for the phase shift data and we find that the value of χ2 per degree of
freedom is large indicating a poor quality fit. In Fig. 1 (left), the dashed line shows the fitting curve
with Breit Wigner parameterization. The fit is bad because the Breit Wigner form doesn’t describe
well our data in high energy region. The same phenomenon was observed in experimental data [14]
and in other lattice study [15]. One solution is to modify the Breit Wigner form decay width with a
centrifugal barrier term [16] which makes the phase-shift value increase faster in the high energy
region,

Γ(Ecm) =
g2

6π

p3
cm

Ecm2

1+(pRR)2

1+(pcmR)2 , (4.2)

where R is a parameter called interaction radius. With the centrifugal barrier term, the high energy
phase shift data can be well described by the modify Breit Wigner form in Fig. 1 (left). The
interaction radius parameter has a reasonable value R = 0.376(65) fm. The phase-shifts for the
mπ ≈ 227MeV ensembles are shown in Fig. 1 (right). The quality of the fit is bad when we try to
fit all points, even when including the centrifugal terms. In this case the points near the threshold
cannot be captured by the fitting form. If we exclude the lowest three points from the fit, the rest of
the data is fit well. Note that the fit also goes very near the lowest points, although it still misses
them by a few sigmas.

5. Comparison with other studies

We extracted the resonance parameters from the fits described in previous section. We ex-
trapolate the resonance mass to the physical point using the expected relation between mπ and
mρ [21, 22]: mρ(mπ) = m0

ρ + c1m2
π +O(m3

π). We plot these results in Fig. 2 together with recent
precision studies for ρ meson resonance from the lattice community. Note that our study and C.
B. Lang et.al [17] are performed in two mass-degenerated N f = 2 sea quarks without KK̄ channel
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Figure 2: Summary of recent lattice precision studies for ρ resonance parameters [17, 15, 18]. The errorbars
for our results include both statistical and the larger systematic error associated with determining the lattice
spacing. The ones from JLAB include only statistical error. The blue curve is the mρ extrapolation with m2

π .
The gray band presents the mρ result study from unitarized chiral perturbation theory [19] which includes the
contribution from the strange quarks. Right panel shows gρππ versus mπ from the same studies. The dashed
line shows the value of gρππ as extracted from PDG [20] data.

contribution. The results from JLAB group [15, 18] use N f = 2+ 1 sea quarks and the study at
mπ ≈ 230MeV also includes the KK̄ channel contribution. Our extrapolation function mρ(mπ) goes
through C. B. Lang et.al’s result, which was extracted from an ensemble with significantly lower
volume, which indicates that the finite volume effects are negligible. The extrapolation value at
physical pion mass is mρ = 716(6)MeV.

6. Conclusion and outlook

We performed a high precision study for rho-meson resonance parameters using nHYP smeared
clover fermions at two dynamical pion masses: mπ ≈ 315MeV and mπ ≈ 227MeV. We used
elongated boxes and compute both rest-frame and boosted-frame energies to obtain the phase-shifts
in the relevant kinematic region. Both quark-antiquark and multihadron operators are used in the
variational analysis in order capture accurately the lowest three energy levels in each channel. The
results for both pion masses show that the Breit Wigner form doesn’t describe well the phase-
shift behavior away from the resonance region, but this can be addressed either by employing
modifications of the fitting form or by restricting the fits to a narrow range around the resonance.
The extrapolation for mρ with mπ based on our results is consistent with the other N f = 2 lattice
study. The extrapolation value of mρ at physical pion mass is about 60MeV lower than the physical
mρ value. This discrepancy is due to the missing KK̄ channel contribution. A more detailed
discussion will be included in an upcoming publication.
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