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2+1 flavor QCD simulation on a 964 lattice N. Ukita

1. Introduction

Lattice QCD has today become the essential theoretical tool for quantitative studies in hadron
physics. Once eliminating the systematic uncertainties including the extrapolation to the physical
point, the simulation results are the predictions of QCD and can be compared with the experiment
values. Thus, the recent lattice QCD simulations are performed near the physical point to control
the extrapolation to the physical point. In Refs. [1, 2], PACS-CS collaboration generated 2+ 1
flavor QCD configurations in a lattice volume of spatial extent L ≈ 3 fm at a lattice cutoff a−1 ≈ 2.2
GeV, where the pion mass reached down to mπ = 145 MeV. Moreover, the physical point simulation
was realized by using the reweighting technique to adjust the hopping parameters to the physical
point. Although the systematic uncertainty of the chiral extrapolation was much reduced in Ref. [1]
and was fully eliminated in Ref. [2], the spatial extent might be small, corresponding to mπL ≈ 2,
a value for which finite volume effects will be difficult to be controlled.

In this work we generate 2+ 1 flavor QCD configurations near the physical point on a larger
lattice (8fm)4 to reduce the finite volume effects and present the results by use of these configu-
rations. The simulation is carried out with the 6-APE stout smeared Wilson clover action and the
Iwasaki gauge action at a lattice spacing a−1 ≈ 2.3 GeV by using K computer in RIKEN Advanced
Institute for Computational Science. The pion mass in this simulation is 146 MeV and mπL ≈ 6,
which is expected to be large enough to ignore the finite volume effects within the statistical errors.
In order to obtain the results at the physical point, we generate new data points with the simulation
point using the reweighting technique [3]. The pion mass for these reweighted points including
the simulation point ranges from 144 MeV to 156 MeV. Using the ChPT formula to the chiral ex-
trapolation for these data points, we determine the light quark masses and the lattice cutoff at the
physical point, where we use π,K and Ω masses as the physical inputs. The light hadron spectrum,
the pseudoscalar decay constants and the nucleon sigma terms are also obtained.

This proceedings is organized as follows. In Sec. 2 we present the simulation details of the
configuration generation and of the data points generated by the reweighting technique from the
simulation point. Section 3 is devoted to describe the determination of the physical point and the
results. Our conclusions are summarized in Sec. 4.

2. Simulation details

2.1 Configuration generation

The use of smeared links in quark actions is currently an efficient way to perform simulations
near the physical point because of better chiral symmetry and less exceptional configurations in
the molecular dynamical steps than the use of thin links. We adopt the nonperturbatively O(a)-
improved 2+1 flavor Wilson clover action with the 6-APE stout smeared links with the smearing
parameter ρ = 0.1 [4] and the Iwasaki gauge action [5].

Simulations are performed on a 944 lattice at β = 1.82 which corresponds to the lattice cut-
off a−1 ≈ 2.3 GeV. We adopt a value of the improvement coefficient cSW = 1.11 which is deter-
mined nonperturbatively in the Schrödinger functional scheme. We choose the hopping param-
eters (κud,κs) = (0.126117,0.124790) to be near the physical point. The degenerated up-down
quarks are simulated with the DDHMC algorithm [6] using the even-odd preconditioning and the
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Figure 1: Light hadron masses normalized by mΩ at the simulation point in comparison with the experi-
mental values.

twofold mass preconditioning [7, 8]. The strange quark is simulated with the UVPHMC algorithm
[9, 10, 11, 12] where the action is UV-filtered [13] after the even-odd preconditioning without
domain decomposition.

After thermalization we generate 2000 trajectories and calculate hadronic observables solving
quark propagators at every 10 trajectories. The statistical errors are estimated with the jackknife
method with a binsize of 50 trajectories. Figure 1 compares the measured light hadron masses nor-
malized by mΩ with the experimental values. The results for mπ/mΩ and mK/mΩ deviate from the
experimental values: +5% and +2%, respectively. Thus, the simulation point is slightly away from
the physical point. For other hadron masses we find less than 3% deviation from the experimental
values except for resonance states.

2.2 Data points generated by reweighting technique

The reweighting factor for the up and down quarks is evaluated with a stochastic method
introducing a set of independent Gaussian random noises ηi (i = 1, . . . ,Nη) :

det[W 2
ud] =

[
lim

Nη→∞

1
Nη

Nη

∑
i=1

e−|W−1
ud ηi|2+|ηi|2

]
, Wud =

D(κ∗
ud)

D(κud)
, (2.1)

where D(κ∗
ud) is the Wilson-Dirac matrix with a target hopping parameter κ∗

ud. For the strange
quark, further, we employ the square root trick,

det[Ws] =

[
lim

Nη→∞

1
Nη

Nη

∑
i=1

e−|W−1
s ηi|2+|ηi|2

] 1
2

, Ws =
D(κ∗

s )

D(κs)
. (2.2)

To reduce the fluctuation in the stochastic evaluation (2.1) and (2.2), we employ the determinant
breakup technique [2, 14, 15].

We choose six target hopping parameters around the simulation point: κs = 0.124768,0.124812
for κud = 0.126117 and κs = 0.124790,0.124812,0.124824,0.124834 for κud = 0.126111. We
introduce 12 noises for each determinant breakup. Figure 2 shows the configuration dependence of
the reweighting factor from the simulation point (κud,κs) = (0.126117,0.124790) to (κ∗

ud,κ∗
s ) =

(0.126117,0.124812), which is normalized by the configuration average. The fluctuations are

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
7
5

2+1 flavor QCD simulation on a 964 lattice N. Ukita

0 20 40 60 80 100 120 140 160 180 200

conf

0.01

0.1

1

10

100

R
ew

ei
g
h
ti

n
g
 f

ac
to

r

(κ
ud

, κ
s
)=(0.126117, 0.124790) --> (0.126117, 0.124812)

Figure 2: Configuration dependence of reweighting factor from (κud,κs) = (0.126117,0.124790) to
(κ∗

ud,κ
∗
s ) = (0.126117,0.124812).
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Figure 3: π , K and Ω masses at (κ∗
ud,κ

∗
s ) = (0.126117,0.124812) as a function of the number of noises

used in each determinant breakup.

within a factor of two orders of magnitude. This is also the case for other reweighting factors.
Figure 3 shows π , K and Ω masses at the reweighted point (κ∗

ud,κ∗
s ) = (0.126117,0.124812) as

a function of the number of noises employed for the stochastic evaluation of each determinant
breakup. The results look converged from small number of noises. This is the case for other
hadron masses and for other reweighted points. Therefore, 12 noises for each determinant breakup
we used is enough to evaluate the reweighting factors. Here, we have the simulation point and six
reweighted points to determine the physical point, where the pion mass ranges from 144 MeV to
156 MeV.

3. Determination of the physical point and the results

In order to obtain the results at the physical point, we determine the physical point through the
SU(2) ChPT formula for the degenerated up-down quark mass and make a linear extrapolation for
the strange quark mass [1]. The formula is given by the following equations for m2

π/mud, fπ and
fK up to NLO:

m2
π

2mud
= B

{
1+

mudB
8π2 f 2 ln

(
2mudB

µ2

)
+4

mudB
f 2 l3

}
, (3.1)

fπ = f
{

1− mudB
4π2 f 2 ln

(
2mudB

µ2

)
+2

mudB
f 2 l4

}
, (3.2)
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Figure 4: SU(2) ChPT fit for m2
π/mud (left), fπ (middle) and fK (right). Blue symbols represent lattice data.

Orange triangles represent the ChPt fit. Orange lines represent the ChPT fit curves with the physical strange
quark mass fixed.

fK = f̄
{

1+β f mud −
3mudB
32π2 f 2 ln

(
2mudB

µ2

)}
, (3.3)

where B = B(0)
s +msB

(1)
s , f = f (0)s +ms f (1)s and f̄ = f̄ (0)s +ms f̄ (1)s . There are nine unknown low

energy constants in the expressions. For K meson and Ω baryon, we use a simple linear formula
with three unknown parameters,

m2
K = αK +βKmud + γKms, mΩ = αΩ +βΩmud + γΩms. (3.4)

For other hadron masses, we adopt the same linear formula with three unknown parameters. We
need three physical inputs to determine the up-down and the strange quark masses and the lattice
cutoff at the physical point. We choose mπ , mK and mΩ.

Figure 4 shows the quark mass dependence of m2
π/mud, fπ and fK . They show that the quark

mass dependence are reasonably described by the ChPT formula. We find that the low energy
constants at NLO defined at the renormalization scale mπ , that is l̄3 and l̄4, are determined with
acceptable errors,

l̄3 = 2.87(62), l̄4 = 4.38(33). (3.5)

Our result is consistent with N f = 2 + 1 average in FLAG2013 [16], l̄3 = 3.05(99) and l̄4 =

4.02(28).
After the additional linear fits for K and Ω, we obtain at the physical point

mMS
ud = 3.142(26)(35)(28)MeV, mMS

s = 88.59(61)(98)(79)MeV, a−1 = 2.333(18)GeV,(3.6)

where the first errors in the quark masses are the statistical ones and the second and the third errors
are coming from the renormalization factor ZMS

m = 0.9950(111)(89) at µ = 2 GeV nonperturba-
tively determined in the Schrödinger functional scheme [17].

For the pseudoscalar decay constants, we obtain

fπ = 131.79(80)(90)(1.25)MeV, fK = 155.55(68)(1.06)(1.48)MeV, (3.7)

with the second and the third errors coming from the renormalization factor ZA = 0.9650(68)(95)
which is nonperturbative determined in the Schrödinger functional scheme [17]. These values are
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Figure 5: Hadron masses normalized by mΩ at the physical point in comparison with experiment.
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Figure 6: Linear chiral extrapolation for the nucleon mass. Symbols represent the same as Figure 4.

consistent with experiment [18]. We also obtain the ratio fK/ fπ = 1.1808(50) and observe 3.1σ
deviation including the systematic error from the experiment [18].

Figure 5 shows the light hadron spectrum extrapolated to the physical point normalized by mΩ

in comparison with experiment. We find less than 5% deviation from the experimental values. Sta-
ble particles in QCD, which are the octet baryons are consistent with the experimental values within
the errors. For unstable particles in QCD (ρ ,∆, · · ·), we observe deviations from the experimental
values. We need further investigations of those as resonances [19, 20].

Finally, we show the results for nucleon sigma terms. For the nucleon mass denoted by blue
symbols in Figure 6, we assume a simple linear formula with three unknown parameter as eq. (3.4).
We obtain

σud = 55(13)MeV, σs = 107(73)MeV, (3.8)

through the Feynman–Hellmann theorem.

4. Conclusion

We have generated 2+1 flavor QCD configurations near the physical point on a 964 lattice em-
ploying the 6-APE stout smeared Wilson clover action with a nonperturbative cSW and the Iwasaki
gauge action at β = 1.82. The physical point is estimated based on the SU(2) ChPT formula using
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several data points generated by the reweighting technique from the simulation point. Adopting
mπ , mK and mΩ as the physical inputs, we obtained the physics results including the quark masses,
the hadron spectrum, the pseudoscalar meson decay constants and nucleon sigma terms.
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