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We present results from an ongoing computation of masses of D mesons, Ds mesons and char-

monium, including both ground states and several parity and angular momentum excitations. We

employ 2+1+1 flavours of dynamical maximally twisted mass fermions at three lattice spacings

and three u/d quark masses at each lattice spacing. We consider different combinations of valence

quark discretizations, with either identical or opposite signs in front of the twisted mass terms. In

the end, our setup allows for a good control of different kinds of systematic effects, in particular

the quark mass dependence of the resulting meson masses and cut-off effects. We obtain good

agreement with experiment for the majority of states and we discuss improvements that will be

made to finalize the analysis.
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1. Introduction

Meanwhile, there is a large number of mesons known experimentally which contain charm

quarks. Some of them are well established and in good agreement with phenomenological expec-

tations, but in other cases their masses and/or widths are not well understood theoretically. For

example, the D∗

s0 and Ds1 mesons are conjectured to be tetraquark candidates or mixtures of a

mesonic and a tetraquark structure. Hence, an ab initio investigation of charmed mesons is highly

interesting and can be in principle realized on the lattice. However, charm physics on the lattice

is complicated due to the currently feasible values of the lattice spacing – if they are too coarse,

the charm quark mass is large in lattice units. Nevertheless, with current computational resources

many questions can be addressed, including the spectrum of charmed mesons. Moreover, charm

quarks can be treated as dynamical, so all systematic effects can be controlled with reasonable pre-

cision. For recent lattice QCD papers using quark-antiquark operators for charm quark containing

mesons, see e.g. Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. For papers using additionally four-

quark interpolating operators, cf. Refs. [14, 15, 16, 17, 18, 19, 20, 21]. Our goal is to compute the

spectrum of D mesons (charm-light), Ds mesons (charm-strange) and charmonium (charm-charm)

using fully dynamical twisted mass ensembles generated by the European Twisted Mass Collabo-

ration (ETMC) with 2+1+1 flavours. The results reported in this proceeding are from an ongoing

work aiming at extending Ref. [22] to obtain the results in the continuum limit.

2. Lattice setup and lattice techniques

We use dynamical twisted mass (TM) configurations generated by ETMC with 2+1+1 dy-

namical quark flavours [23]. The gauge action is the Iwasaki action [24], while the fermionic

sector consists of the Wilson twisted mass action for the degenerate up/down doublet [25] and non-

degenerate strange/charm doublet [26]. Automatic O(a) improvement is realized by setting the

hopping parameter κ to its critical value for which the PCAC quark mass vanishes [25, 27].

In the valence sector, we use the following setup. The action for the light quarks is the same

as the one in the sea. For strange and charm, we introduce two strange (s, s′) and two charm (c, c′)

quark flavours with the action for a single flavour f [27]:

D f = DW +m0 + iµ f γ5. (2.1)

We take

• either µs/c =−µs′/c′ – we call this TM setup (however, it is still non-unitary)

• or µs/c = µs′/c′ – we call this Osterwalder-Seiler (OS) setup.

In this way, we avoid the mixing of strange and charm quarks, which would make the computa-

tions problematic. It is important to emphasize that such setup still guarantees automatic O(a)

improvement.

The simulation parameters of our ensembles are summarized in Tab. 1. We use three lattice

spacings between approximately 0.06 fm and 0.09 fm and pion masses ranging between around

230 MeV and 480 MeV. This enables us to investigate the discretization and quark mass effects

and extrapolate our results to the continuum limit and the physical pion mass.
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Ensemble β lattice aµl
µl,R κc

L
mπL

a

[MeV] [fm] [fm]

A30.32 1.90 323
×64 0.0030 13 0.163272 2.8 3.5 0.0885

A40.32 1.90 323
×64 0.0040 17 0.163270 2.8 4.1 0.0885

A80.24 1.90 243
×48 0.0080 34 0.163260 2.1 4.3 0.0885

B25.32 1.95 323
×64 0.0025 12 0.161240 2.6 3.2 0.0815

B55.32 1.95 323
×64 0.0055 26 0.161236 2.6 4.6 0.0815

D15.48 2.10 483
×96 0.0015 9 0.156361 3.0 3.2 0.0619

D20.48 2.10 483
×96 0.0020 12 0.156357 3.0 3.7 0.0619

D30.48 2.10 483
×96 0.0030 19 0.156355 3.0 4.5 0.0619

Table 1: Simulation parameters for gauge field configuration ensembles used in this work. Shown

are: ensemble label, inverse gauge coupling (β ), lattice volume ((L/a)3
× (T/a)), sea quark mass

(aµl ), its physical value in MeV (µl,R, renormalized in the MS scheme at µ = 2 GeV), critical value

of the hopping parameter yielding vanishing PCAC mass (κc), lattice extent in fm (L), product of

the pion mass and the lattice extent (mπL) and lattice spacing in fm (a).

Our lattice meson creation operators are of the following form1:

Otm
Γ,χ̄(1)χ(2) ≡

1
√

V/a3
∑
n

χ̄ (1)(n) ∑
∆n=±ex,±ey,±ez

U(n;n+∆n)Γ(∆n)χ (2)(n+∆n), (2.2)

where ∑n gives zero total momentum, ∑∆n realizes spatial separation between quarks (such that the

meson can have orbital angular momentum), Γ(∆n) is a suitable combination of spherical harmon-

ics and γ-matrices (determines total angular momentum, parity and charge conjugation properties

(for charmonium)), U(n;n+∆n) is a gauge link, χ (1),(2) are twisted basis quark operators.

We use standard smearing techniques to enhance the overlap between trial states and low lying

meson states. We apply APE smearing of links and Gaussian smearing of quark fields. Note that

smearing does not affect the irreducible representation of the cubic group, equivalent of the total

angular momentum OJ on the lattice, parity P and charge conjugation C , all determined by Γ(∆n)

in the creation operators.

For each sector, i.e. the same flavours χ̄ (1)χ (2), cubic representation OJ and (for c̄c) C (OS)

or C ◦P(tm) (TM), we compute temporal correlation matrices of meson creation operators. The

different entries in a given correlation matrix hence differ by their Γ-structure (spin) and parity P ,

since parity is broken by TM at finite lattice spacing. An example of extraction of meson masses

and assignment of parity from a 2×2 correlation matrix is discussed in detail in Ref. [22], Sec. 4.2.

3. Results

3.1 Extrapolation procedure

Our aim is to extract the physical masses of mesons containing charm quarks. Therefore, we

use the following procedure to extrapolate to the continuum limit and interpolate/extrapolate to the

physical quark masses:

1For a detailed account of the used lattice techniques, we refer to Ref. [22].
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Figure 1: Examples of tuning to physical strange (left) and charm (right) quark masses. Ensemble

A80.24.

1. We compute the relevant TM/OS correlation functions for three lattice spacings, three light

quark masses for each lattice spacing (with the exception of B-ensembles where the com-

putations for one mass are still in progress), two strange quark masses per light quark mass

and two charm quark masses per light quark mass (i.e. three pairs (µs,1,µc,2), (µs,2,µc,1),

(µs,2,µc,2) for each light quark mass µl).

2. We tune the strange/charm quark masses via 2m2
K −m2

π (which does not depend on the light

quark mass at leading order of chiral perturbation theory) and the D meson mass, mD (es-

sentially light quark mass independent). To compute 2m2
K −m2

π and mD for this tuning, we

always use the TM setup (µs,c =−µs′,c′ ). The physical strange/charm quark masses are such

values of µs/µc that 2m2
K −m2

π and mD take their physical values of 0.477GeV2 and 1.865

GeV, respectively (cf. Fig. 1).

3. Using the values of the physical strange/charm quark masses µs/µc, we inter-/extrapolate

all our meson masses. We use jackknife with binning to account for autocorrelations and

propagate the errors from the tuning.

4. This gives us a set of 16 points per meson mass (3 lattice spacings × (2–3) light quark

masses × 2 discretizations). Having this set of data points, we perform a combined chiral

and continuum extrapolation, using the following fitting ansätze:

MTM(a,mπ) = M+ cTMa2 +αTM(m2
π −m2

π,phys), (3.1)

MOS(a,mπ) = M+ cOSa2 +αOS(m2
π −m2

π,phys) (3.2)

with five fitting parameters: M, cT M, cOS, αTM, αOS. Note that we enforce a common

continuum and physical pion mass limit M for both discretizations.

3.2 Examples of combined chiral and continuum extrapolations and spectrum plots

In Figs. 2 and 3, we present examples of our combined chiral and continuum extrapolations

using Eqs. (3.1) and (3.2), four in the charmonium sector and two in the Ds sector. In all cases,
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Figure 2: Combined chiral and continuum extrapolations in the charmonium sector: J/ψ (JPC =

1−−, top left), ηc(1S) (JPC = 0−+, top right), χc2(1P) (JPC = 2++, bottom left), ηc(2S) (JPC =

0−+, bottom right). PDG values of the masses [28] vs. results of our extrapolations: 3096.920(10)

MeV vs. 3096(6) MeV (χ2/d.o.f. of our fit: 0.36), 2981.1(1.1) MeV vs. 2985(6) MeV (χ2/d.o.f. =

0.54), 3556.20(9) MeV vs. 3560(12) MeV (χ2/d.o.f. = 0.53), 3638.9(1.3) MeV vs. 3726(38) MeV

(χ2/d.o.f. = 0.85), respectively.
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Figure 3: Combined chiral and continuum extrapolations in the Ds sector: Ds (JP = 0−, left), D∗

s

(JP = 1−, right). PDG values of the masses [28] vs. results of our extrapolations: 1968.49(32)

MeV vs. 1964.8(3.6) MeV (χ2/d.o.f. = 1.24), 2112.3(5) MeV vs. 2110.7(5.2) MeV (χ2/d.o.f. =

1.08), respectively.
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Figure 4: Spectrum plots for charmonium (top), Ds mesons (bottom left) and D mesons (bottom

right). The black lines/grey boxes correspond to the PDG values [28] (if available; the line/box

widths correspond to the experimental uncertainties and/or resonance widths), while the coloured

boxes are our lattice results in different representations of the cubic group (extrapolated to the

continuum limit and the physical quark masses).

our fitting ansätze give good description of lattice data and agreement with PDG values [28] for

the ground states of given channels (J/ψ , ηc(1S), χc2(1P), Ds, D∗
s ) at the per-mille level. One

of the presented cases (ηc(2S)) is an excited state (in the JPC = 0−+ channel) and we observe

discrepancy with respect to the PDG value. We plan to investigate the sources of such discrepancies

further – in the cases of excited states, they are most probably due to short plateaus and hence a

systematic analysis of uncertainties from the choice of the plateau fitting range is needed.

Finally, we present the summary of our results in Fig. 4, where we compare our lattice-

extracted meson masses for charmonium, Ds and D mesons with PDG values [28]. Our results

at this stage are still preliminary – in the near future we will extend our analysis [29] by including

the missing quark mass at one of the lattice spacings and by investigating in more detail the sources

of systematic uncertainties, such as the ones related to the choice of the plateau range (particularly

for excited states), finite volume effects and the choice of the fitting ansatz to extrapolate to the

physical pion mass and the continuum limit. Nevertheless, we already have rather good control

over quark mass effects and discretization effects. For many cases, we obtain good agreement with

PDG values, especially for ground states, where the plateau quality is good. Note that in certain
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cases we don’t expect agreement with experiment, since we assume a dominating qq̄ structure

(whereas e.g. the D∗

s0 might be a tetraquark) and that the particles are stable (while e.g. the D∗

0 can

decay to D+π and hence should possibly be treated with more advanced lattice techniques).
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