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Ground state charmed meson spectra for N f = 2+1+1 T. D. Rae

1. Introduction

Experiments such as Babar, Belle, BES III and LHCb continue to provide an abundance of charmed
physics results [1, 2]. Lattice QCD (LQCD) proves to be a vital tool in the interpretation of these
results; for a review see [3, 4, 5]. For example, LQCD measurements provide access to CKM
matrix elements, and thus a check of the SM, from the leptonic and semileptonic decays of D
mesons. LQCD could also help to understand the currently unclassified experimental states that
cannot be incorporated into the quark model. In addition, the masses and decays of low lying
charmonium states have been accurately measured by experiment and provide an excellent test
of precision LQCD. The subject of this proceeding is the hyperfine mass splittings of the doubly
charmed J/ψ and ηcc mesons and the singly charmed D∗s and Ds mesons. These mass splittings
typically show significant cut-off effects for Wilson type fermions (see e.g. [6] and references
therein). It is, therefore, important that this is understood through a careful systematic study of the
lattice measurements.

2. Lattice setup and methodology

For this calculation, we use the 27 ‘neutral’ BMW ensembles [7], generated using the clover im-
proved Wilson action with N f = 1+ 1+ 1+ 1 and 3 levels of HEX gauge link smearing [8]. The
ensembles are spread over 4 lattice spacings (Table 1) and have a pion mass range from 195 to
440 MeV (leaving a mild extrapolation in the light quark mass to the physical mass), whereas the
strange and charm quark masses are chosen to be roughly physical. Our measurements are sepa-
rated by 10 trajectories, with typically 400 configurations per ensemble and 64 source positions per
configuration. The whole calculation is performed using a bootstrap analysis with 2000 resamples.
To illustrate the distribution of our ensembles, landscape plots for the β = 3.2 ensembles are shown
in Fig. 1. One of the main challenges for charm physics calculations is that the large size of amc

often leads to large cutoff effects due to the small correlation lengths (see Table 1).

In order to extract the ground state masses (and amplitudes), we use single state fits to the
correlation functions, Eq. (2.1). When we have multiple channels that access the same observables,

β = 6/g2 a[fm] amc L3×T Mπ [MeV] min-max no. ensembles
3.2 0.102 0.71 323×64 235-440 12
3.3 0.089 0.58 323×64 195-410 6
3.4 0.077 0.47 323×64 220-405 3
3.5 0.064 0.35 323×64, 643×96 200-420 6

Table 1: Lattice spacing, charm quark mass, box size, pion mass range and number of ensembles at this β

value; all for the four gauge couplings. A complete table of parameters can be found in [7].
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Figure 1: Landscape plots for the β = 3.2 ensembles. The red points indicate the individual resample
averages and the blue points with error bars indicate the ensemble average with resample error. The black
asterisk indicates the physical mass point. More ensemble details may be found in Table S3 of [7].

we perform the fits simultaneously. For example, for the pion:

|CPP(t)|= c2
(

e−Mt + e−M(T−t)
)
,

|CPA4(t)|= |CA4P(t)|= cd
(

e−Mt + e−M(T−t)
)
, (2.1)

|CA4A4(t)|= d2
(

e−Mt + e−M(T−t)
)
.

The calculation was performed for both Gauss-Gauss (source-sink) and Gauss-point smearing,
which totals 8 channels, and thus 5 fit parameters, M, c, d, c′→ gπ and d′→ fπ , can be extracted
(the prime indicates point amplitudes). It should be noted that, where appropriate, we average the
measured observables in isospin multiplets, i.e. the 3 pions (π+, π0, π−) and 2 kaons (K+, K0).

Setting the lattice scale, so as to interpret things in physical units, can be performed either
globally or locally ensemble by ensemble (the choice for the results presented here). Both are
equally valid and will feature in the systematic error budget of the final analysis (see Section 4).
For the normalisation, we use the omega mass, which we found could also be reliably extracted
using one state fits to the correlation function.

One of the main challenges in fitting correlation functions is the determination of the fitting
interval for any given channel. For this, we loop over all possible tmin and tmax intervals with the
condition that there is a minimum separation of 5 timesteps. For each of these, we perform a fit
using a correlated chi-squared minimisation, from which two fitting intervals are chosen for each
channel; one using the smallest χ2/dof and one using the largest P-value. An example is shown
in Fig. 2. Given the selected fit range, we extract the ground-state mass and amplitudes (decay
constants) for each of the 2000 bootstrap samples. Fig. 3 demonstrates the result for the mass
extracted from the simultaneous one state fit by overlaying it onto the effective mass plots for the 8
channels.
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Figure 2: Fitting interval selection criteria, χ2/dof (left panel) and P-value (right panel). This demonstrates
the selected fit interval tmin to tmax for a given channel for our β = 3.2, Mπ = 440 MeV ensemble. The red
dashed lines indicate the selected interval corresponding to the smallest (χ2/dof) and largest (P-value) bars.
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Figure 3: Effective mass plots for light-light and charm-charm channels (left and right panels respectively)
for the β = 3.2, Mπ = 440 MeV ensemble. The effective masses for the 8 channels, 4 Gauss-Gauss (source-
sink) and 4 Gauss-point smearing, are shown by the black and blue points respectively. Point styles indicate
the different channels, the coloured bars indicate the extracted mass and error from the simultaneous one
state fits to the correlation functions and the vertical dotted lines indicate the automatically selected fitting
interval.

3. Hyperfine splitting

The mass splittings of the doubly and singly charmed states that we are interested in are defined as:

f (x,y,z) =

(
MJ/ψ −Mηcc

)
MΩ

, f (x,y,z) =

(
MD∗s −MDs

)
MΩ

(3.1)
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Figure 4: Results for the hyperfine splittings MJ/ψ −Mηcc (left panel) and MD∗s −MDs (right panel), ‘pro-
jected’ into two dimensional plots, where the x-axes are proxies for the light, strange and charm quark
masses (top, middle and bottom rows respectively). The projection is such that the data are adjusted, by the
fit, for the effects of the two coordinates that are not shown. The fitted value is given by the black square.

where we are interested in the behaviour as a function of the light, strange and charm quark masses,
for which we use the following proxies:

x = M2
π/M2

Ω, y =
(
2M2

K−M2
π

)
/M2

Ω, z = M2
ηcc

/M2
Ω. (3.2)
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We found that a good description of the chiral behaviour, for both splittings, could be obtained
using the linear ansatz

f (x,y,z) = c0 + c1x+ c2y+ c3z, (3.3)

which is shown as a two dimensional projection in Fig. 4 (see caption for details). We can see the
mild extrapolation to the physical point in the light quark mass and the interpolation to the physical
point in both the charm and strange quark masses. This is shown for the β = 3.2 ensembles, and is
repeated for each individual beta so that we may study the scaling window when extrapolating to
the continuum limit (Fig. 5). We are also investigating alternative ansätze for the chiral behaviour.

For the continuum extrapolation, we look at the behaviour in O(αsa) and O(a2), i.e. the
leading discretisation errors for our particular lattice action (see [7] for details). Fig. 5 shows a
significant dependence of the mass splitting on the lattice spacing, however the lattice measure-
ments appear consistent with the physical limit. The effects of quark disconnected diagrams are
not included in our simulations. Without these the cc̄ hyperfine splitting increases by a few MeV
[9, 10]. This has been estimated from LQCD simulations [11] to be ∼ 3 MeV1. To reflect this, we
have shifted the PDG value for the cc̄ mass splitting in Fig. 5 by ∼ 3 MeV.

It should be noted that Fig. 5 shows only the statistical errors and should be considered a
‘snapshot’ plot, i.e. it is only for one particular choice of parameters (see Section 4) and, as such,
does not include any systematic errors. A full systematic analysis is ongoing, the considerations of
which are detailed in the next section. Having checked the scaling window, we will proceed with
a thorough systematic analysis using a ‘global’ fitting procedure, that simultaneously fits all betas
through the addition of a term proportional to αsa or a2.
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Figure 5: Results for hyperfine splittings MJ/ψ −Mηcc (blue points) and MD∗s −MDs (red points) versus αa
(left panel) and a2 (right panel). The errors are statistical only; a full analysis with a thorough treatment of all
sources of systematic uncertainties is currently underway. The black asterisks show the PDG values. How-
ever it should be noted that the effects of quark-disconnected diagrams are not included in our calculation
and therefore the PDG value for the cc̄ splitting has been modified (for more details see text).

1It should be noted that in [12], a calculation using perturbation theory predicts a contribution with the opposite
sign, thus decreasing the hyperfine splitting.
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4. Systematic analysis and outlook

As with all lattice calculations, at various points throughout the calculation several, equally valid,
choices can be made (listed below), and it is through performing all of these on a level footing
that we can give a thorough and detailed systematic error budget. All possible combinations of the
following will be evaluated within a looped bootstrap analysis:

• Fitting interval selection: χ2/dof versus P-value (Fig. 2 left versus right panels).

• Choice of scale setting procedure: local versus global.

• Chiral ansatz: Eq. 3.3 versus alternatives.

• Continuum extrapolation: αsa versus a2 (Fig. 5 left versus right panels).

• Inclusion of finite volume effects through the comparison of different ansätze.

The extracted data also allows us to look at the charmed decay constants, which will be treated
analogously to the mass splittings and will appear in a forthcoming paper.
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