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The ρ resonance from N f = 2+1+1 tmLQCD M. Werner

name L/a T/a Nconf a[fm] Mπ [MeV]

A30.32 32 64 147 0.086 147
A40.32 32 64 250 0.086 250
A60.24 24 48 245 0.086 246
A80.24 24 48 251 0.086 254
B55.32 32 64 146 0.082 146

Table 1: All Ensembles are generated by the European Twisted Mass Collaboration with N f = 2+ 1+ 1
Wilson twisted mass fermions [1, 2]

1. Introduction

The ρ resonance is located in the isospin-1 channel of ππ scattering. The ρ decays strongly
almost exclusively into ππ . It is besides the f0 or σ resonance the lowest resonance in QCD.
Therefore, it is highly desirable to gain theoretical insight using a non-perturbative method like
lattice QCD.

Resonance properties are not directly accessible in lattice QCD due to the Euclidean structure
of space-time [3]. Martin Lüscher invented an approach utilising finite size effects in energy levels
of multi-particle states, which can be directly related to the infinite volume scattering phase shift.

In this proceeding we present preliminary results of the first calculation of the ρ resonance
properties using lattice QCD with N f = 2+ 1+ 1 dynamical quark flavours. The computation is
based on gauge configurations generated by the European Twisted Mass Collaboration (ETMC) [1,
2] and uses the Wilson twisted mass discretisation of QCD [4], which has the property of auto-
matic O(a) improvement [5] at so-called maximal twist. Details of the gauge configurations used
including the spatial and temporal lattice extends L/a and T/a, respectively, and the number of
configurations Nconf can be found in table 1. For more details we refer to the corresponding ref-
erences from which we also took over the notation. For other results on the ρ meson from this
conference see Refs. [6, 7].

2. Lüscher Method

The relation between energy levels in a finite volume and the infinite volume phase shift was
first described by Lüscher in Refs. [8, 9, 10, 11]. It was later on extended and generalised for
moving frames [12, 13]. In this paper we follow the notations of Ref. [14]. In a general moving
frame with momentum ~P = 2π~n/L, one first computes the energy E of the ππ system with I = 1
for the interacting case using suitable operators as described in the next section. Next, the center-
of-mass frame energy

E2
CM = E2−~P2

and the corresponding Lorentz factor

γ =
E

ECM
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are computed. From the center-of-mass energy the lattice-momentum transfer fraction, q, can be
derived via

q̃2 =
E2

CM
4
−M2

π , q2 =

(
q̃L
2π

)2

,

where Mπ is the pion rest mass. With the definition of γ and q it is possible to connect the finite-
volume energies with phase shift values via

wlm =
1

π3/2
√

2l +1
γ
−1q−l−1Z ~n

lm(q
2) . (2.1)

where Z ~n
lm(q

2) is the generalised Lüscher Z -function. For example, the phase shift in the center
of mass frame (~n = 0,γ = 1), δ1, is obtained via [11]

cotδ1 = w00 . (2.2)

Similar relations hold also for moving frames, see e.g. Ref. [14].
In principle mixing with higher partial waves needs to be taken into account but it has been

shown in Ref. [15] that the mixing is negligible in practice. We will assume this holds for our data
at the moment. Nevertheless, we will investigate the validity of this assumption in the future.

The experimental data for the scattering phase shift δ1(ECM) can be described using the effec-
tive range formula [16]

tanδ1(ECM) =
g2

ρππ

6π

q̃3

ECM(M2
ρ −E2

CM)
, (2.3)

with two parameters, the effective coupling gρππ and the ρ meson mass Mρ , respectively. Follow-
ing Ref. [13], we are going to use this formula to describe our lattice data for the scattering phase
shift δ1(ECM). Mρ and gρππ are related to the ρ meson decay width Γρ by

Γρ =
g2

ρππ

(
M2

ρ/4−M2
π

) 3
2

6πM2
ρ

, (2.4)

with Mπ the pion mass.

3. Operators and Data Analysis

We determine the interacting energy levels E by computing the following 2× 2 correlation
matrix

C (~P, t) = 〈~O ⊗ ~O† 〉 , ~O = (ππ(~P, t),ρ0(~P, t))t . (3.1)

The interpolating operators ππ(~P, t) and ρ0(~P, t) are the two particle and single particle operators,
respectively, which couple to the isospin-1 channel depending on the total center of mass momen-
tum ~P. For details on the construction of these operators see e.g. Refs. [13, 15]. For this proceeding
we concentrate on the A1 irreducible representation of the octahedral group [14]. We include all
frames with~n2 = 0,1,2,3, including all possible permutations contribution to the same~n2.

As a smearing scheme we use the stochastic Laplacian Heaviside method as described in
Refs. [17, 18]. The details and our parameter choices can be found in Ref. [19].
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Figure 1: I = 1 ππ scattering phase shift for the A60 ensemble. The solid line is a fit of the effective range
formula Eq. 2.3 to our data with statistical errors indicated by the band. The vertical line indicates the 2MK

threshold.

Note that in Wilson twisted mass lattice QCD isospin is broken explicitly at O(a2) which leads
to fermionic disconnected contributions to the ρ0. These contributions are pure lattice artefacts and
will, therefore, be neglected in our analysis, see also Ref. [13].

Next we solve the generalised eigenvalue problem

C (t) η
(n)(t, t0) = λ

(n)(t, t0) C (t0) η
(n)(t, t0)

for eigenvectors η(n)(t, t0) and eigenvalues λ (n)(t, t0), n = 0,1 [20, 21]. The energy levels are
determined from the exponential fall-off of λ (t, t0) at large t-values. Each 2×2 correlation matrix
allows us to access two energy levels. We take the so-called thermal pollutions [22] into account
by weighting and shifting of C [15].

The analysis follows the one we already described in Ref. [19]. We use a bootstrap procedure
with 5000 bootstrap samples to compute statistical errors and to estimate the variance-covariance
matrix used in the χ2-fits. For a given eigenvalue we fit an exponential function with two free
parameters to the data for a large set of fit ranges [t1, t2] with degrees of freedom larger than 5 for
the lowest energy level and larger than 4 for the first excited state. The p-value of each fit indicates
whether or not this model is justified. The energy level is, therefore, determined as the weighted
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Figure 2: Left: ρ resonance mass r0Mρ as a function of the squared pion mass (r0Mπ)
2 for all ensembles

investigated in this work. The black point is the corresponding PDG value [23]. Right: gρππ versus the
squared pion mass (r0Mπ)

2. The dashed horizontal line corresponds to the PDG value.

median over all used fit ranges with weight [19]

wE = {(1−2|pE−0.5|) ·1/∆E}2 ,

where pE is the p-value of the corresponding exponential fit and ∆E the statistical error of the
energy level determined from the bootstrap procedure. Similarly, we determine the pion mass Mπ

and derived quantities like δ1, see Ref. [19]. In the computation of δ1 we exclude energy levels
where ECM < 2Mπ , which might appear due to statistical fluctuations. A systematic uncertainty
on E and δ1 stemming from the fit ranges is obtained from the 68% confidence interval of the
corresponding weighted distributions.

4. Results

In figure 1 we show the P-wave scattering phase shift as a function of aECM for the A60.24
ensemble (cf. Table 1) below inelastic threshold. We show statistical errors as the inner error bars
and the systematic error as the outer error bars in the figure. As visible, the systematic uncertainties
are sizable in some cases which is a hint that we do not yet control excited or thermal states
satisfactorily with the weighting and shifting procedure. In the future we will increase the operator
basis to get a better handle on these effects.

We observe that – as expected for a resonance – the phase-shift starts around 0, rises sharply
through π/2 around aECM = 0.43 and levels out again somewhat below 3. The fit of Eq. 2.3 to
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the data is shown in figure 1 as the solid line with error band. Statistical errors on ECM and δ1

are included correlated in the fit, while systematic uncertainties are not yet included. All points in
the range from 2Mπ to 2MK are included in the fit. The fit describes the data well, though the χ2

value is not particularly good. This comes mainly from the decrease in δ1 at ECM close to 2MK .
We observe a similar behaviour on all our ensembles. The large χ2-value might also be due to not
completely removed excited or thermal states, which we are currently investigating. Note, however,
that the χ2 value reduces already significantly once systematic uncertainties are included in the fit.

We have carried out this analysis for all ensembles listed in table 1. We remark that the
ensembles B55.32 and A30.32 currently have significantly lower statistics than the other three
ensembles. The resulting values of Mρ are shown in units of the Sommer parameter r0 in the left
plot of figure 2 as a function of (r0Mπ)

2. The values and errors of r0/a are taken from Ref. [24].
The errors of r0 are propagated via parametric bootstrap to r0Mρ . Additionally, we show the PDG
value of Mρ = 775.5MeV [23] using r0 = 0.49(2) fm. The error on this point is solely coming
from the uncertainty in the physical value of r0. In the right plot of figure 2 we show gρππ again
as a function of (r0Mπ)

2. The uncertainties of gρππ are significantly larger than for Mρ due to the
structure of the ERF Eq. 2.3. The experimental value of gρππ included in the figure was obtained
by inserting Mρ = 775.5MeV, Γρ = 149.1MeV and Mπ = 139.57MeV into Eq. 2.4. Within the
currently still sizable uncertainties for the effective coupling we can confirm the mild dependence
on M2

π observed in previous lattice investigations. Note that we did not yet estimate a systematic
uncertainty for Mρ and gρππ .

5. Summary and Outlook

We have presented first results of the ρ meson resonance properties obtained with N f = 2+
1+1 Wilson twisted mass fermions. The computations have been performed for two values of the
lattice spacing and a range of pion mass values.

For a number of ETMC ensembles we have determined the scattering phase shift δ1 as a
function of the center of mass energy. Using the effective range formula, we obtain the ρ resonance
mass Mρ and the effective coupling gρππ . This study will be extended by enlarging the operator
basis and by including more irreducible representations which will help to investigate systematic
errors stemming from excited or thermal states further. To analyse lattice artifacts and perform a
chiral extrapolation we will increase the number of lattice spacing values and pion masses.

We thank the members of ETMC for the most enjoyable collaboration. The computer time
for this project was made available to us by the John von Neumann-Institute for Computing (NIC)
on the JUDGE and Juqueen systems in Jülich. We thank U.-G. Meißner for granting us access on
JUDGE. This project was funded by the DFG as a project in the Sino-German CRC110. Z. Wang
was supported in part by the National Science Foundation of China (NSFC) under the project
o.11335001. The open source software packages tmLQCD [25], Lemon [26] and R [27] have been
used.
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